0.8 μA Low Power Consumption Voltage Regulator with ON/OFF Switch

GENERAL DESCRIPTION

The XC6215 series are highly precise, low noise, positive voltage LDO regulators manufactured using CMOS processes. The series achieves very low supply current, 0.8 μA (TYP) and consists of a reference voltage source, an error amplifier, a current foldback circuit, and a phase compensation circuit plus a driver transistor.

Ultra small packages USP-3, USP-4, USPN-4, USP-6B06 and SSOT-24, and small package SOT-25 packages make high density mounting possible. Therefore, the series is ideal for applications where high density mounting is required such as in mobile phones.

Output voltage is selectable in 0.1V increments within a range of 0.9V ~ 5.0V by laser trimming.

The series is also compatible with low ESR ceramic capacitors, which give added output stability.

The current limiter's foldback circuit also operates as a short protect for the output current limiter and the output pin. Furthermore, the CE function allows the output of the regulator to be turned off, resulting in greatly reduced power consumption.

APPLICATIONS

- Smart phones / Mobile phones
- Portable game consoles
- Digital still cameras / Camcorders
- Digital audio equipments
- Mobile devices / terminals

FEATURES

- **Maximum Output Current**: 200mA (300mA Limit, TYP.)
 - @ VIN=3.0V, VOUT=4.0V
- **Dropout Voltage**: 320mV @ IOUT = 100mA
 - @ VOUT = 3.0V
- **Operating Input Voltage**: 1.5V ~ 6.0V
- **Output Voltage Range**: 0.9V ~ 5.0V (0.1V Increments)
- **Highly Accurate**
 - Set voltage accuracy ±2%
 - (1.5V<VOUT(T)<5.0V)
 - Set voltage accuracy ±30mV
 - (0.9V<VOUT(T)<1.5V)
- **Low Power Consumption**: 0.8 μA (TYP.)
- **Stand-by Current**: Less than 0.1 μA
- **Operating Temperature Range**: -40℃ ~ 85℃
- **Low ESR Capacitor Compatible**: Ceramic capacitor
- **Current Limiter Circuit Built-In**
- **Packages**: USP-4
 - SSOT-24
 - USP-3 (For the XC6215P series only)
 - SOT-25
 - USPN-4
 - USP-6B06
- **Environmentally Friendly**: EU RoHS Compliant, Pb Free

TYPICAL APPLICATION CIRCUIT

- USP-4, SSOT-24, SOT-25, USPN-4, USP-6B06 packages
 (For the USP-3 package, with no CE pin)

TYPICAL PERFORMANCE CHARACTERISTICS

- **Supply Current vs. Input Voltage**

```
VIN  VOUT
---  ----
VCE  =  VOUT
CIN=1.0μF (ceramic), CL=0.1μF (ceramic)
```

VIN VOUT
--- ----
VCE = VOUT
CIN=1.0μF (ceramic), CL=0.1μF (ceramic)

PRODUCT CLASSIFICATION

<table>
<thead>
<tr>
<th>DESIGNATOR</th>
<th>ITEM</th>
<th>SYMBOL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>Type of Regulator</td>
<td>B</td>
<td>CE logic = High active with no pull-down resistor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P</td>
<td>3 pin regulator with no CE pin (USP-3 only)</td>
</tr>
<tr>
<td>②③</td>
<td>Output Voltage</td>
<td>09 ~ 50</td>
<td>0.9 V ~ 5.0V, 0.1V step</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>e.g. $V_{OUT}=3.0V \Rightarrow ②=3, ③=0$</td>
</tr>
<tr>
<td>④</td>
<td>Output Voltage Accuracy</td>
<td>2</td>
<td>+ 2 % accuracy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>e.g. $V_{OUT}=3.0V \Rightarrow ②=3, ③=0, ④=2$</td>
</tr>
<tr>
<td>⑤⑥⑦</td>
<td>Packages (Order Unit)</td>
<td>GR-G, NR-G, MR-G, MR-G</td>
<td>USP-4 (3,000pcs/Reel)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SSOT-24 (3,000pcs/Reel)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SSOT-24 (3,000pcs/Reel)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SOT-25 (3,000pcs/Reel)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SOT-25 (3,000pcs/Reel)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HR-G</td>
<td>USP-3 (for the XC6215P series only) (3,000pcs/Reel)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>USP-3 (for the XC6215P series only) (3,000pcs/Reel)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7R-G</td>
<td>USP-4 (5,000pcs/Reel)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8R-G</td>
<td>USP-6B06 (5,000pcs/Reel)</td>
</tr>
</tbody>
</table>

(1) The "-G" suffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant.

XCA6215 Series

** BLOCK DIAGRAMS **

- **XCA6215B Series**

- **XCA6215P Series**

* Diodes shown in the above circuit are ESD protection diodes and parasitic diodes
■ PIN CONFIGURATION

USP-4 (BOTTOM VIEW)

SSOT-24 (TOP VIEW)

USP-3 (BOTTOM VIEW)

SOT-25 (TOP VIEW)

USPN-4 (BOTTOM VIEW)

USP-6B06 (BOTTOM VIEW)

* For mounting intensity and heat dissipation, please refer to recommended mounting pattern and recommended metal mask when soldering the pad of USP-4 and USP-6B06. Mounting should be electrically isolated or connected to the Vss (No.2) pin.

■ PIN ASSIGNMENT

<table>
<thead>
<tr>
<th>PIN NUMBER</th>
<th>PIN NAME</th>
<th>FUNCTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>USP-4</td>
<td>SSOT-24</td>
<td>USP-3</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

- CE: Power Supply
- Vss: Ground
- Vout: ON / Off Switch
- Vin: Output
- NC: No Connection

■ PIN FUNCTION ASSIGNMENT

XC6215 Series (Type B)

<table>
<thead>
<tr>
<th>IC OPERATION</th>
<th>CE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation ON</td>
<td>H</td>
</tr>
<tr>
<td>Operation OFF</td>
<td>L</td>
</tr>
</tbody>
</table>

*CE pin should not be left open.
ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>RATINGS</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage</td>
<td>VIN</td>
<td>- 0.3 ~ + 7.0</td>
<td>V</td>
</tr>
<tr>
<td>Output Voltage</td>
<td>VOUT</td>
<td>VSS - 0.3 ~ VIN + 0.3</td>
<td>V</td>
</tr>
<tr>
<td>CE Input Voltage (*1)</td>
<td>VCE</td>
<td>VSS - 0.3 ~ + 7.0</td>
<td>V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power Dissipation (Ta=25°C)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SOT-25</td>
<td>Pd</td>
<td>250</td>
<td>mW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>600 (40mm x 40mm Standard board) (2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>760 (JESD51-7 board) (2)</td>
<td></td>
</tr>
<tr>
<td>SSOT-24</td>
<td></td>
<td>150</td>
<td>mW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500 (40mm x 40mm Standard board) (2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>680 (JESD51-7 board) (2)</td>
<td></td>
</tr>
<tr>
<td>USP-4</td>
<td></td>
<td>120</td>
<td>mW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000 (40mm x 40mm Standard board) (2)</td>
<td></td>
</tr>
<tr>
<td>USP-3</td>
<td></td>
<td>120</td>
<td>mW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000 (40mm x 40mm Standard board) (2)</td>
<td></td>
</tr>
<tr>
<td>USPN-4</td>
<td></td>
<td>100</td>
<td>mW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>600 (40mm x 40mm Standard board) (2)</td>
<td></td>
</tr>
<tr>
<td>USP-6B06</td>
<td></td>
<td>900</td>
<td>mW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>600 (40mm x 40mm Standard board) (2)</td>
<td></td>
</tr>
</tbody>
</table>

| Operating Ambient Temperature | Topr | - 40 ~ + 85 | °C |
| Storage Temperature | Tstg | - 55 ~ +125 | °C |

Note:

(1) Except for the XC6215P series

(2) This power dissipation figure shown is PCB mounted and is for reference only.

The mounting condition is please refer to PACKAGING INFORMATION.
ELECTRICAL CHARACTERISTICS

XC6215B Series

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
<th>CIRCUIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Voltage (^{(2)})</td>
<td>(V_{OUT(E)})</td>
<td>(V_{IN}=V_{CE}=V_{OUT(T)}) (+1.0V, I_{OUT}=1mA)</td>
<td>(\text{E-0(^{(6)})})</td>
<td>V</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Maximum Output Current	\(I_{OUT\text{MAX}}\)	VIN=VCE=VOUT(T) + 1.0V	50	70	-	mA	1
VIN=VCE=VOUT(T) + 1.0V	VOUT(T)=0.9V	60	80	-			
VIN=VCE=VOUT(T) + 1.0V	VOUT(T)=1.0V \(-1.11\)	80	110	-			
VIN=VCE=VOUT(T) + 1.0V	VOUT(T)=1.2V \(-1.3\)	\(\text{E-0\(^{(6)}\)}\)	E-0 \(^{(6)}\)	mV	1		

Load Regulation	\(\Delta V_{OUT}\)	VIN=VCE=VOUT(T) + 1.0V	-	15	70	mV	1
VIN=VCE=VOUT(T) + 1.0V	VOUT(T)=0.9V	\(1m\text{A} \leq I_{OUT} \leq 50m\text{A}\)					
VIN=VCE=VOUT(T) + 1.0V	VOUT(T)=1.0V \(-1.11\)	\(1m\text{A} \leq I_{OUT} \leq 60m\text{A}\)					
VIN=VCE=VOUT(T) + 1.0V	VOUT(T)=1.2V \(-1.3\)	\(1m\text{A} \leq I_{OUT} \leq 80m\text{A}\)					
Dropout Voltage \(^{(3)}\)	\(V_{dif}\)	\(V_{CE}=V_{IN}, V_{OUT(T)}=0.9V\)	\(\text{E-1\(^{(6)}\)}\)	mV	1		
\(V_{CE}=V_{IN}, V_{OUT(T)}=1.0V\)	\(I_{OUT}=50m\text{A}\)	\(1m\text{A} \leq I_{OUT} \leq 100m\text{A}\)					
\(V_{CE}=V_{IN}, V_{OUT(T)}=1.2V\)	\(I_{OUT}=80m\text{A}\)	\(1m\text{A} \leq I_{OUT} \leq 100m\text{A}\)					
Supply Current	\(I_{DO}\)	VIN=VCE=VOUT(T) + 1.0V	-	0.8	1.5	\(\mu\text{A}\)	2
VIN=VCE=VOUT(T) + 1.0V	\(V_{OUT} \leq 3.9V\)	-	1.0	1.8			
Stand-by Current	\(I_{STBY}\)	VIN=VOUT(T) + 1.0V, VCE=VSS	-	0.01	0.10	\(\mu\text{A}\)	2
ELECTRICAL CHARACTERISTICS (Continued)

XC6215B Series (Continued)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT.</th>
<th>CIRCUIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line Regulation</td>
<td>ΔV_{out}</td>
<td>$V_{\text{out}}(T) = 0.9V, V_{\text{ce}} = V_{\text{in}}; 1.5V \leq V_{\text{in}} \leq 6.0V$</td>
<td>-</td>
<td>0.05</td>
<td>0.15</td>
<td>%/V</td>
<td>①</td>
</tr>
<tr>
<td></td>
<td>(ΔV_{vin})</td>
<td>$V_{\text{out}} = 1.0V \sim 1.2V, V_{\text{ce}} = V_{\text{in}}$</td>
<td>$V_{\text{out}}(T) \geq 1.3V, V_{\text{ce}} = V_{\text{in}}$</td>
<td>$V_{\text{out}}(T) \geq 1.3V, V_{\text{ce}} = V_{\text{in}}$</td>
<td>$I_{\text{out}} = 30mA$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Voltage</td>
<td>V_{in}</td>
<td>-</td>
<td>1.5</td>
<td>-</td>
<td>6.0</td>
<td>V</td>
<td>-</td>
</tr>
<tr>
<td>Output Voltage Temperature Characteristics</td>
<td>ΔV_{out}</td>
<td>$V_{\text{in}} = V_{\text{ce}} = V_{\text{out}}(T) + 1.0V$</td>
<td>$V_{\text{out}} = V_{\text{out}}(T) + 0.5V \leq V_{\text{in}} \leq 6.0V$</td>
<td>$V_{\text{out}} = 0.9V, I_{\text{out}} = 1mA$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current Limit</td>
<td>I_{lim}</td>
<td>$V_{\text{out}} = \text{Vout}(E) \times 0.95$</td>
<td>$V_{\text{out}} = \text{Vout}(T) \geq 1.3V, V_{\text{ce}} = V_{\text{in}}$</td>
<td>$V_{\text{out}} = \text{Vout}(T) \geq 1.3V, V_{\text{ce}} = V_{\text{in}}$</td>
<td>$I_{\text{out}} = 30mA$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short Circuit Current</td>
<td>I_{short}</td>
<td>$V_{\text{in}} = V_{\text{ce}} = V_{\text{out}}(T) + 1.0V$</td>
<td>$V_{\text{out}} = V_{\text{out}}(T) + 0.5V \leq V_{\text{in}} \leq 6.0V$</td>
<td>$V_{\text{out}} = 0V$</td>
<td>-</td>
<td>50</td>
<td>mA</td>
</tr>
</tbody>
</table>

NOTE:

(*) $V_{\text{out}(T)}$: Fixed output voltage

(*) $V_{\text{out}(E)}$: Effective output voltage

(i.e. the output voltage when $V_{\text{out}(T)} + 1.0V$ is provided at the VIN pin while maintaining a certain I_{out} value).

(**) $V_{\text{diff}} = \{ V_{\text{in}} \times (% - V_{\text{out}(T)}) \}$

(**) V_{min}: The input voltage when $V_{\text{out}(T)}$ appears as input voltage is gradually decreased.

(***) $V_{\text{out}(T)}$: A voltage equal to 98% of the output voltage whenever an amply stabilized $I_{\text{out}} (V_{\text{out}(T)} + 1.0V)$ is input.

(****) Refer to “VOLTAGE CHART.”

NOTES:

1. $V_{\text{out}(T)}$: Fixed output voltage
2. $V_{\text{out}(E)}$: Effective output voltage
3. V_{diff}: (i.e. the output voltage when $V_{\text{out}(T)} + 1.0V$ is provided at the VIN pin while maintaining a certain I_{out} value).
4. V_{min}: The input voltage when $V_{\text{out}(T)}$ appears as input voltage is gradually decreased.
5. $V_{\text{out}(T)}$: A voltage equal to 98% of the output voltage whenever an amply stabilized $I_{\text{out}} (V_{\text{out}(T)} + 1.0V)$ is input.
6. Refer to “VOLTAGE CHART.”
ELECTRICAL CHARACTERISTICS (Continued)

XC6215P Series

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT.</th>
<th>CIRCUIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Voltage (*2)</td>
<td>V(_{\text{OUT(E)}})</td>
<td>(V_{\text{IN}} = V_{\text{OUT(T)}} + 1.0V, I_{\text{OUT}} = 1\text{mA})</td>
<td>E-0 (*6)</td>
<td>V</td>
<td></td>
<td>①</td>
<td></td>
</tr>
<tr>
<td>Maximum Output Current</td>
<td>I(_{\text{OUT MAX}})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{\text{IN}} = V_{\text{OUT(T)}} + 1.0V)</td>
<td>50</td>
<td>70</td>
<td>-</td>
<td>mA</td>
<td>①</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{\text{OUT(T)}} = 0.9V)</td>
<td>60</td>
<td>80</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{\text{IN}} = V_{\text{OUT(T)}} + 1.0V) (V_{\text{OUT(T)}} = 1.0V \sim 1.1V)</td>
<td>80</td>
<td>110</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{\text{IN}} = V_{\text{OUT(T)}} + 1.0V) (V_{\text{OUT(T)}} = 1.2V \sim 1.3V)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{\text{IN}} = V_{\text{OUT(T)}} + 1.0V) (V_{\text{OUT(T)}} = 1.4V \sim 1.6V)</td>
<td>100</td>
<td>140</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{\text{IN}} = V_{\text{OUT(T)}} + 1.0V) (V_{\text{OUT(T)}} = 1.7V \sim 2.2V)</td>
<td>120</td>
<td>150</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{\text{IN}} = V_{\text{OUT(T)}} + 1.0V) (V_{\text{OUT(T)}} = 2.3V \sim 2.9V)</td>
<td>150</td>
<td>195</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{\text{IN}} = V_{\text{OUT(T)}} + 1.0V) (V_{\text{OUT(T)}} \geq 3.0V)</td>
<td>200</td>
<td>300</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load Regulation</td>
<td>(\Delta V_{\text{OUT}})</td>
<td>(V_{\text{IN}} = V_{\text{OUT(T)}} + 1.0V) (V_{\text{OUT(T)}} = 0.9V) (1\text{mA} \leq I_{\text{OUT}} \leq 50\text{mA})</td>
<td>-</td>
<td>15</td>
<td>70</td>
<td>mV</td>
<td>①</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{\text{IN}} = V_{\text{OUT(T)}} + 1.0V) (V_{\text{OUT(T)}} = 1.0V \sim 1.1V) (1\text{mA} \leq I_{\text{OUT}} \leq 60\text{mA})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{\text{IN}} = V_{\text{OUT(T)}} + 1.0V) (V_{\text{OUT(T)}} = 1.2V \sim 1.3V) (1\text{mA} \leq I_{\text{OUT}} \leq 80\text{mA})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{\text{IN}} = V_{\text{OUT(T)}} + 1.0V) (V_{\text{OUT(T)}} \geq 1.4V) (1\text{mA} \leq I_{\text{OUT}} \leq 100\text{mA})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dropout Voltage (*3)</td>
<td>V(_{\text{dif}})</td>
<td>(V_{\text{OUT(T)}} = 0.9V) (I_{\text{OUT}} = 50\text{mA})</td>
<td>E-1 (*6)</td>
<td></td>
<td></td>
<td>mV</td>
<td>①</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{\text{OUT(T)}} = 1.0V \sim 1.1V) (I_{\text{OUT}} = 60\text{mA})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{\text{OUT(T)}} = 1.2V \sim 1.3V) (I_{\text{OUT}} = 80\text{mA})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{\text{OUT(T)}} \geq 1.4V) (I_{\text{OUT}} = 100\text{mA})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply Current</td>
<td>I(_{\text{DD}})</td>
<td>(V_{\text{IN}} = V_{\text{OUT(T)}} + 1.0V) (V_{\text{OUT(T)}} \leq 3.9V)</td>
<td>-</td>
<td>0.8</td>
<td>1.5</td>
<td>(\mu\text{A})</td>
<td>②</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{\text{IN}} = V_{\text{OUT(T)}} + 1.0V) (V_{\text{OUT(T)}} \geq 4.0V)</td>
<td>-</td>
<td>1.0</td>
<td>1.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ELECTRICAL CHARACTERISTICS (Continued)

XC6215P Series (Continued)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT.</th>
<th>CIRCUIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line Regulation</td>
<td>$\frac{\Delta V_{OUT}}{\Delta V_{IN} \cdot V_{OUT}}$</td>
<td>$V_{OUT(T)}=0.9V$ 1.5V $\leq V_{IN} \leq 6.0V$</td>
<td>-</td>
<td>0.05</td>
<td>0.15</td>
<td>%/V</td>
<td>①</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{OUT(T)}=1.0V$ \sim 1.2V $V_{OUT(T)}+0.5V \leq V_{IN} \leq 6.0V$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_{OUT}=1mA$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{OUT(T)}\geq 1.3V$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{OUT(T)}+0.5V \leq V_{IN} \leq 6.0V$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_{OUT}=30mA$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Voltage</td>
<td>V_{IN}</td>
<td>-</td>
<td>1.5</td>
<td>-</td>
<td>6.0</td>
<td>V</td>
<td>-</td>
</tr>
<tr>
<td>Output Voltage Temperature Characteristics</td>
<td>$\frac{\Delta V_{OUT}}{\Delta \text{Topr} \cdot V_{OUT}}$</td>
<td>$V_{IN}=V_{OUT(T)}+1.0V, I_{OUT}=30mA$ - $40^\circ C < \text{Topr} < 85^\circ C$</td>
<td>-</td>
<td>±100</td>
<td>-</td>
<td>ppm/°C</td>
<td>①</td>
</tr>
<tr>
<td>Current Limit</td>
<td>I_{lim}</td>
<td>$V_{OUT}=V_{OUT(T)} \times 0.95$ $V_{OUT(T)}=0.9V$</td>
<td>100</td>
<td>300</td>
<td>-</td>
<td>mA</td>
<td>①</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{IN}=V_{OUT(T)}+2.0V$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{OUT}=V_{OUT(T)} \times 0.95$ $V_{OUT(T)}=1.0V$ \sim 1.1V</td>
<td>120</td>
<td>300</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{IN}=V_{OUT(T)}+2.0V$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{OUT}=V_{OUT(T)} \times 0.95$ $V_{OUT(T)}=1.2V$ \sim 1.3V</td>
<td>160</td>
<td>300</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{IN}=V_{OUT(T)}+2.0V$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{OUT}=V_{OUT(T)} \times 0.95$ $V_{OUT(T)}=1.4V$ \sim 2.9V</td>
<td>200</td>
<td>300</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{IN}=V_{OUT(T)}+2.0V$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short Circuit Current</td>
<td>I_{short}</td>
<td>$V_{IN}=V_{OUT(T)}+1.0V, V_{OUT}=0V$</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>mA</td>
<td>①</td>
</tr>
</tbody>
</table>

NOTE:

*(1) VOUT(T): Fixed output voltage
*(2) VOUT(E): Effective output voltage
*(3) Vdiff = \{ VIN \times \} - VOUT \times
*(4) VIN = The input voltage when VOUT appears as input voltage is gradually decreased.
*(5) VOUT = A voltage equal to 98% of the output voltage whenever an amply stabilized IOUT \{ VOUT(T) + 1.0V \} is input.
*(6) Refer to "VOLTAGE CHART".
VOLTAGE CHART

Dropout Voltage Chart

<table>
<thead>
<tr>
<th>SETTING OUTPUT VOLTAGE</th>
<th>E-0 OUTPUT VOLTAGE (V)</th>
<th>E-1 DROPOUT VOLTAGE (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOUT(T)</td>
<td>VOUT</td>
<td>Vdif</td>
</tr>
<tr>
<td></td>
<td>MIN.</td>
<td>MAX.</td>
</tr>
<tr>
<td>0.9</td>
<td>0.870</td>
<td>0.930</td>
</tr>
<tr>
<td>1.0</td>
<td>0.970</td>
<td>1.030</td>
</tr>
<tr>
<td>1.1</td>
<td>1.070</td>
<td>1.130</td>
</tr>
<tr>
<td>1.2</td>
<td>1.170</td>
<td>1.230</td>
</tr>
<tr>
<td>1.3</td>
<td>1.270</td>
<td>1.330</td>
</tr>
<tr>
<td>1.4</td>
<td>1.370</td>
<td>1.430</td>
</tr>
<tr>
<td>1.5</td>
<td>1.470</td>
<td>1.530</td>
</tr>
<tr>
<td>1.6</td>
<td>1.588</td>
<td>1.632</td>
</tr>
<tr>
<td>1.7</td>
<td>1.666</td>
<td>1.734</td>
</tr>
<tr>
<td>1.8</td>
<td>1.764</td>
<td>1.836</td>
</tr>
<tr>
<td>1.9</td>
<td>1.862</td>
<td>1.938</td>
</tr>
<tr>
<td>2.0</td>
<td>1.960</td>
<td>2.040</td>
</tr>
<tr>
<td>2.1</td>
<td>2.058</td>
<td>2.142</td>
</tr>
<tr>
<td>2.2</td>
<td>2.156</td>
<td>2.244</td>
</tr>
<tr>
<td>2.3</td>
<td>2.254</td>
<td>2.346</td>
</tr>
<tr>
<td>2.4</td>
<td>2.352</td>
<td>2.448</td>
</tr>
<tr>
<td>2.5</td>
<td>2.450</td>
<td>2.550</td>
</tr>
<tr>
<td>2.6</td>
<td>2.548</td>
<td>2.652</td>
</tr>
<tr>
<td>2.7</td>
<td>2.646</td>
<td>2.754</td>
</tr>
<tr>
<td>2.8</td>
<td>2.744</td>
<td>2.856</td>
</tr>
<tr>
<td>2.9</td>
<td>2.842</td>
<td>2.958</td>
</tr>
<tr>
<td>3.0</td>
<td>2.940</td>
<td>3.060</td>
</tr>
<tr>
<td>3.1</td>
<td>3.038</td>
<td>3.162</td>
</tr>
<tr>
<td>3.2</td>
<td>3.136</td>
<td>3.264</td>
</tr>
<tr>
<td>3.3</td>
<td>3.234</td>
<td>3.366</td>
</tr>
<tr>
<td>3.4</td>
<td>3.332</td>
<td>3.468</td>
</tr>
<tr>
<td>3.5</td>
<td>3.430</td>
<td>3.570</td>
</tr>
<tr>
<td>3.6</td>
<td>3.528</td>
<td>3.672</td>
</tr>
<tr>
<td>3.7</td>
<td>3.626</td>
<td>3.774</td>
</tr>
<tr>
<td>3.8</td>
<td>3.724</td>
<td>3.876</td>
</tr>
<tr>
<td>3.9</td>
<td>3.822</td>
<td>3.978</td>
</tr>
<tr>
<td>4.0</td>
<td>3.920</td>
<td>4.080</td>
</tr>
<tr>
<td>4.1</td>
<td>4.018</td>
<td>4.182</td>
</tr>
<tr>
<td>4.2</td>
<td>4.116</td>
<td>4.284</td>
</tr>
<tr>
<td>4.3</td>
<td>4.214</td>
<td>4.386</td>
</tr>
<tr>
<td>4.4</td>
<td>4.312</td>
<td>4.488</td>
</tr>
<tr>
<td>4.5</td>
<td>4.410</td>
<td>4.590</td>
</tr>
<tr>
<td>4.6</td>
<td>4.508</td>
<td>4.692</td>
</tr>
<tr>
<td>4.7</td>
<td>4.606</td>
<td>4.794</td>
</tr>
<tr>
<td>4.8</td>
<td>4.704</td>
<td>4.896</td>
</tr>
<tr>
<td>4.9</td>
<td>4.802</td>
<td>4.998</td>
</tr>
<tr>
<td>5.0</td>
<td>4.900</td>
<td>5.100</td>
</tr>
</tbody>
</table>
TEST CIRCUITS

● Circuit ①

XC6215 Series B Type

XC6215 Series P Type

● Circuit ②

XC6215 Series B Type

XC6215 Series P Type
OPERATIONAL EXPLANATION

XC6215B Series (As for the XC6215P Series, with no CE pin)

Output Voltage Control

The voltage divided by resistors R1 & R2 is compared with the internal reference voltage by the error amplifier. The P-channel MOSFET, which is connected to the V_out pin, is then driven by the subsequent output signal. The output voltage at the V_out pin is controlled and stabilized by a system of negative feedback. The current limit circuit and short protect circuit operate in relation to the level of output current. Further, the IC's internal circuitry can be operated or shutdown via the CE pin's signal.

Short Protection Circuit

The XC6215 series' regulator offers circuit protection by means of a built-in foldback circuit. When the load current reaches the current limit level, the fixed current limiter circuit operates and output voltage drops. As a result of this drop in output voltage, the foldback circuit operates, the output voltage drops further and output current decreases. When the output pin is shorted, a current of about 50mA flows.

CE Pin

The IC's internal circuitry can be operated or shutdown via the signal from the CE pin with the XC6215B series. In shutdown mode, output at the V_out pin will be pulled down to the V_sss level via R1 & R2. Note that the XC6215 series' regulator is “High Active/No Pull-Down”, operations will become unstable with the CE pin open. We suggest that you use this IC with either a V_in voltage or a V_sss voltage input at the CE pin. If this IC is used with the correct specifications for the CE pin, the operational logic is fixed and the IC will operate normally. However, supply current may increase as a result of through current in the IC's internal circuitry.

NOTES ON USE

1. For temporary, transitional voltage drop or voltage rising phenomenon, the IC is liable to malfunction should the ratings be exceeded.
2. Where wiring impedance is high, operations may become unstable due to noise and/or phase lag depending on output current.
3. As for the XC6215 series, internally achieved phase compensation makes a stable operation of the IC possible even when there is no output capacitor (C_l). In order to stabilize the V_in's voltage level, we recommend that an input capacitor (C_i) of about 0.1 to 1.0 μF be connected between the V_in pin and the V_sss pin. Moreover, during transient response, so as to prevent an undershoot or overshoot, we recommend that the output capacitor (C_l) of about 0.1 to 1.0 μF be connected between the V_out pin and the V_sss pin. However, please wire the input capacitor (C_i) and the output capacitor (C_l) as close to the IC as possible.
4. Torex places an importance on improving our products and its reliability. However, by any possibility, we would request user fail-safe design and post-aging treatment on system or equipment.
TYPICAL PERFORMANCE CHARACTERISTICS

(1) Output Voltage vs. Output Current

XC6215x092

- **VIN=VCE=1.9V**
- **CIN=1.0μF(ceramic), CL=0.1μF(ceramic)**

XC6215x152

- **VIN=VCE=2.5V**
- **CIN=1.0μF(ceramic), CL=0.1μF(ceramic)**

XC6215x302

- **VIN=VCE=4.0V**
- **CIN=1.0μF(ceramic), CL=0.1μF(ceramic)**

XC6215x092

- **Ta=25°C**
- **VIN=1.5V**
- **VIN=1.9V**
- **VIN=2.4V**
- **VIN=2.9V**

XC6215x152

- **Ta=25°C**
- **VIN=1.8V**
- **VIN=2.0V**
- **VIN=2.5V**
- **VIN=3.0V**

XC6215x302

- **Ta=25°C**
- **VIN=3.3V**
- **VIN=3.5V**
- **VIN=4.0V**
- **VIN=4.5V**
(1) Output Voltage vs. Output Current (Continued)

XC6215x502
Vin=VCE=6.0V
Cin=1.0μF(ceramic),CL=0.1μF(ceramic)

XC6215x502
Ta=25°C
Cin=1.0μF(ceramic),CL=0.1μF(ceramic)

XC6215x092
Vin=VCE
Cin=1.0μF(ceramic),CL=0.1μF(ceramic)

XC6215x092
Vin=VCE
Cin=1.0μF(ceramic),CL=0.1μF(ceramic)

XC6215x152
Vin=VCE
Cin=1.0μF(ceramic),CL=0.1μF(ceramic)

XC6215x152
Vin=VCE
Cin=1.0μF(ceramic),CL=0.1μF(ceramic)

(2) Output Voltage vs. Input Voltage

XC6215x502
Vin=5.3V
Vin=5.5V
Vin=6.0V
Ta=25°C
Cin=1.0μF(ceramic),CL=0.1μF(ceramic)

XC6215x502
Vin=5.3V
Vin=5.5V
Vin=6.0V
Ta=25°C
Cin=1.0μF(ceramic),CL=0.1μF(ceramic)

XC6215x092
Vin=VCE
Iout=1mA
Iout=30mA
Iout=50mA

XC6215x092
Vin=VCE
Iout=1mA
Iout=30mA
Iout=50mA

XC6215x152
Vin=VCE
Iout=1mA
Iout=30mA
Iout=50mA
Iout=100mA

XC6215x152
Vin=VCE
Iout=1mA
Iout=30mA
Iout=50mA
Iout=100mA
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(2) Output Voltage vs. Input Voltage (Continued)

XC6215x302

\[\text{Output Voltage V\text{_out}} (\text{V}) \]

\[\text{Input Voltage V\text{_in}} (\text{V}) \]

\[\text{I\text{_OUT}=1mA} \]

\[\text{I\text{_OUT}=30mA} \]

\[\text{I\text{_OUT}=50mA} \]

\[\text{I\text{_OUT}=100mA} \]

\[\text{VIN=VCE} \]

\[\text{C\text{_IN}=1.0\mu\text{F (ceramic)}, C\text{_L}=0.1\mu\text{F (ceramic)}} \]

XC6215x502

\[\text{Output Voltage V\text{_out}} (\text{V}) \]

\[\text{Input Voltage V\text{_in}} (\text{V}) \]

\[\text{I\text{_OUT}=1mA} \]

\[\text{I\text{_OUT}=30mA} \]

\[\text{I\text{_OUT}=50mA} \]

\[\text{I\text{_OUT}=100mA} \]

\[\text{VIN=VCE} \]

\[\text{C\text{_IN}=1.0\mu\text{F (ceramic)}, C\text{_L}=0.1\mu\text{F (ceramic)}} \]

XC6215x092

\[\text{Dropout Voltage V\text{_dif}} (\text{V}) \]

\[\text{Output Current I\text{_OUT} (mA)} \]

\[\text{Minimum Operating Voltage} \]

\[\text{Ta=-40\degree C} \]

\[\text{Ta=25\degree C} \]

\[\text{Ta=85\degree C} \]

XC6215x152

\[\text{Dropout Voltage V\text{_dif}} (\text{V}) \]

\[\text{Output Current I\text{_OUT} (mA)} \]

\[\text{Ta=-40\degree C} \]

\[\text{Ta=25\degree C} \]

\[\text{Ta=85\degree C} \]
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(3) Dropout Voltage vs. Output Current (Continued)

XC6215x302

- **VIN**: VCE
- **CIN**: 1.0μF (ceramic)
- **CL**: 0.1μF (ceramic)

![Dropout Voltage vs. Output Current](image1)

XC6215x502

- **VIN**: VCE
- **CIN**: 1.0μF (ceramic)
- **CL**: 0.1μF (ceramic)

![Dropout Voltage vs. Output Current](image2)

(4) Supply Current vs. Input Voltage

XC6215x092

- **VIN**: VCE
- **CIN**: 1.0μF (ceramic)
- **CL**: 0.1μF (ceramic)

![Supply Current vs. Input Voltage](image3)

XC6215x152

- **VIN**: VCE
- **CIN**: 1.0μF (ceramic)
- **CL**: 0.1μF (ceramic)

![Supply Current vs. Input Voltage](image4)
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(5) Output Voltage vs. Ambient Temperature

XC6215x092
- VIN=VCE=1.9V
- CIN=1.0μF(ceramic), CL=0.1μF(ceramic)

- IOUT=1mA
- IOUT=30mA
- IOUT=50mA

XC6215x152
- VIN=VCE=2.5V
- CIN=1.0μF(ceramic), CL=0.1μF(ceramic)

- IOUT=1mA
- IOUT=30mA
- IOUT=50mA

XC6215x302
- VIN=VCE=4.0V
- CIN=1.0μF(ceramic), CL=0.1μF(ceramic)

- IOUT=1mA
- IOUT=30mA
- IOUT=50mA

XC6215x502
- VIN=VCE=6.0V
- CIN=1.0μF(ceramic), CL=0.1μF(ceramic)

- IOUT=1mA
- IOUT=30mA
- IOUT=50mA

(6) Supply Current vs. Ambient Temperature

XC6215x092
- VIN=VCE=1.9V
- CIN=1.0μF(ceramic), CL=0.1μF(ceramic)

- Supply Current I_SSS (μA)

XC6215x152
- VIN=VCE=2.5V
- CIN=1.0μF(ceramic), CL=0.1μF(ceramic)

- Supply Current I_SSS (μA)
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(6) Supply Current vs. Ambient Temperature (Continued)

XC6215x302

Vin=VCE=4.0V

CIN=1.0μF(ceramic), CL=0.1μF(ceramic)

<table>
<thead>
<tr>
<th>Ambient Temperature Ta (°C)</th>
<th>Supply Current I SS (μA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-50</td>
<td>0.0</td>
</tr>
<tr>
<td>-25</td>
<td>0.3</td>
</tr>
<tr>
<td>0</td>
<td>0.6</td>
</tr>
<tr>
<td>25</td>
<td>0.9</td>
</tr>
<tr>
<td>50</td>
<td>1.2</td>
</tr>
<tr>
<td>75</td>
<td>1.5</td>
</tr>
<tr>
<td>100</td>
<td>1.8</td>
</tr>
</tbody>
</table>

XC6215x502

Vin=VCE=6.0V

CIN=1.0μF(ceramic), CL=0.1μF(ceramic)

<table>
<thead>
<tr>
<th>Ambient Temperature Ta (°C)</th>
<th>Supply Current I SS (μA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-50</td>
<td>0.0</td>
</tr>
<tr>
<td>-25</td>
<td>0.3</td>
</tr>
<tr>
<td>0</td>
<td>0.6</td>
</tr>
<tr>
<td>25</td>
<td>0.9</td>
</tr>
<tr>
<td>50</td>
<td>1.2</td>
</tr>
<tr>
<td>75</td>
<td>1.5</td>
</tr>
<tr>
<td>100</td>
<td>1.8</td>
</tr>
</tbody>
</table>

(7) CE Threshold Voltage vs. Ambient Temperature

XC6215x092

Vin=1.9V, IOUT=1mA

CIN=1.0μF(ceramic), CL=0.1μF(ceramic)

<table>
<thead>
<tr>
<th>Ambient Temperature Ta (°C)</th>
<th>CE Threshold Voltage V CEH ,VCEL (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-50</td>
<td>0.5</td>
</tr>
<tr>
<td>-25</td>
<td>0.8</td>
</tr>
<tr>
<td>0</td>
<td>1.1</td>
</tr>
<tr>
<td>25</td>
<td>1.4</td>
</tr>
<tr>
<td>50</td>
<td>1.7</td>
</tr>
<tr>
<td>75</td>
<td>2.0</td>
</tr>
<tr>
<td>100</td>
<td>2.3</td>
</tr>
</tbody>
</table>

XC6215x152

Vin=2.5V, IOUT=1mA

CIN=1.0μF(ceramic), CL=0.1μF(ceramic)

<table>
<thead>
<tr>
<th>Ambient Temperature Ta (°C)</th>
<th>CE Threshold Voltage V CEH ,VCEL (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-50</td>
<td>0.5</td>
</tr>
<tr>
<td>-25</td>
<td>0.8</td>
</tr>
<tr>
<td>0</td>
<td>1.1</td>
</tr>
<tr>
<td>25</td>
<td>1.4</td>
</tr>
<tr>
<td>50</td>
<td>1.7</td>
</tr>
<tr>
<td>75</td>
<td>2.0</td>
</tr>
<tr>
<td>100</td>
<td>2.3</td>
</tr>
</tbody>
</table>

XC6215x302

Vin=4.0V, IOUT=1mA

CIN=1.0μF(ceramic), CL=0.1μF(ceramic)

<table>
<thead>
<tr>
<th>Ambient Temperature Ta (°C)</th>
<th>CE Threshold Voltage V CEH ,VCEL (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-50</td>
<td>0.5</td>
</tr>
<tr>
<td>-25</td>
<td>0.8</td>
</tr>
<tr>
<td>0</td>
<td>1.1</td>
</tr>
<tr>
<td>25</td>
<td>1.4</td>
</tr>
<tr>
<td>50</td>
<td>1.7</td>
</tr>
<tr>
<td>75</td>
<td>2.0</td>
</tr>
<tr>
<td>100</td>
<td>2.3</td>
</tr>
</tbody>
</table>

XC6215x502

Vin=6.0V, IOUT=1mA

CIN=1.0μF(ceramic), CL=0.1μF(ceramic)

<table>
<thead>
<tr>
<th>Ambient Temperature Ta (°C)</th>
<th>CE Threshold Voltage V CEH ,VCEL (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-50</td>
<td>0.5</td>
</tr>
<tr>
<td>-25</td>
<td>0.8</td>
</tr>
<tr>
<td>0</td>
<td>1.1</td>
</tr>
<tr>
<td>25</td>
<td>1.4</td>
</tr>
<tr>
<td>50</td>
<td>1.7</td>
</tr>
<tr>
<td>75</td>
<td>2.0</td>
</tr>
<tr>
<td>100</td>
<td>2.3</td>
</tr>
</tbody>
</table>
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(8) Input Transient Response

XC6215x092

\[\text{tr}=\text{tf}=5\mu\text{sec} \]
\[V_{IN}=V_{CE} \]
\[I_{OUT}=1\text{mA} \]
\[C_{L}=0.1\mu\text{F (ceramic)} \]

Output Voltage

\[V_{OUT} \]

Input Voltage

\[V_{IN} \]

**Time (200\mu\text{sec}\text{/div})

XC6215x092

\[\text{tr}=\text{tf}=5\mu\text{sec} \]
\[V_{IN}=V_{CE} \]
\[I_{OUT}=1\text{mA} \]
\[C_{L}=1.0\mu\text{F (ceramic)} \]

Output Voltage

\[V_{OUT} \]

Input Voltage

\[V_{IN} \]

**Time (400\mu\text{sec}\text{/div})

XC6215x092

\[\text{tr}=\text{tf}=5\mu\text{sec} \]
\[V_{IN}=V_{CE} \]
\[I_{OUT}=30\text{mA} \]
\[C_{L}=0.1\mu\text{F (ceramic)} \]

Output Voltage

\[V_{OUT} \]

Input Voltage

\[V_{IN} \]

**Time (200\mu\text{sec}\text{/div})

XC6215x092

\[\text{tr}=\text{tf}=5\mu\text{sec} \]
\[V_{IN}=V_{CE} \]
\[I_{OUT}=30\text{mA} \]
\[C_{L}=1.0\mu\text{F (ceramic)} \]

Output Voltage

\[V_{OUT} \]

Input Voltage

\[V_{IN} \]

**Time (200\mu\text{sec}\text{/div})

XC6215x092

\[\text{tr}=\text{tf}=5\mu\text{sec} \]
\[V_{IN}=V_{CE} \]
\[I_{OUT}=50\text{mA} \]
\[C_{L}=0.1\mu\text{F (ceramic)} \]

Output Voltage

\[V_{OUT} \]

Input Voltage

\[V_{IN} \]

**Time (200\mu\text{sec}\text{/div})

XC6215x092

\[\text{tr}=\text{tf}=5\mu\text{sec} \]
\[V_{IN}=V_{CE} \]
\[I_{OUT}=50\text{mA} \]
\[C_{L}=1.0\mu\text{F (ceramic)} \]

Output Voltage

\[V_{OUT} \]

Input Voltage

\[V_{IN} \]

**Time (200\mu\text{sec}\text{/div})
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(8) Input Transient Response (Continued)

XC6215x152

- $t_{r}=t_{f}=5\mu s$, $V_{IN}=V_{CE}$, $I_{OUT}=1\, mA$, $C_{L}=0.1\mu F$ (ceramic)

XC6215x152

- $t_{r}=t_{f}=5\mu s$, $V_{IN}=V_{CE}$, $I_{OUT}=1\, mA$, $C_{L}=1.0\mu F$ (ceramic)

XC6215x152

- $t_{r}=t_{f}=5\mu s$, $V_{IN}=V_{CE}$, $I_{OUT}=30\, mA$, $C_{L}=0.1\mu F$ (ceramic)

XC6215x152

- $t_{r}=t_{f}=5\mu s$, $V_{IN}=V_{CE}$, $I_{OUT}=30\, mA$, $C_{L}=1.0\mu F$ (ceramic)

XC6215x152

- $t_{r}=t_{f}=5\mu s$, $V_{IN}=V_{CE}$, $I_{OUT}=100\, mA$, $C_{L}=0.1\mu F$ (ceramic)

XC6215x152

- $t_{r}=t_{f}=5\mu s$, $V_{IN}=V_{CE}$, $I_{OUT}=100\, mA$, $C_{L}=1.0\mu F$ (ceramic)
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(8) Input Transient Response (Continued)

XC6215x302

```
tr=tf=5μsec, VIN=VCE, IOUT=1mA, CL=0.1μF(ceramic)
```

XC6215x302

```
tr=tf=5μsec, VIN=VCE, IOUT=30mA, CL=0.1μF(ceramic)
```

XC6215x302

```
tr=tf=5μsec, VIN=VCE, IOUT=100mA, CL=0.1μF(ceramic)
```

XC6215x302

```
tr=tf=5μsec, VIN=VCE, IOUT=1mA, CL=1.0μF(ceramic)
```

XC6215x302

```
tr=tf=5μsec, VIN=VCE, IOUT=30mA, CL=1.0μF(ceramic)
```

XC6215x302

```
tr=tf=5μsec, VIN=VCE, IOUT=100mA, CL=1.0μF(ceramic)
```
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(8) Input Transient Response (Continued)

XC6215x502

- **Input Voltage** V_{IN} (V)
- **Output Voltage** V_{OUT} (V)
- $t_{rr}=t_{f}=5\mu s$, $V_{IN}=V_{CE}$,
- $I_{OUT}=1\,mA$, $CL=0.1\,\mu F$ (ceramic)
- $t_{rr}=t_{f}=5\mu s$, $V_{IN}=V_{CE}$,
- $I_{OUT}=30\,mA$, $CL=0.1\,\mu F$ (ceramic)
- $t_{rr}=t_{f}=5\mu s$, $V_{IN}=V_{CE}$,
- $I_{OUT}=100\,mA$, $CL=0.1\,\mu F$ (ceramic)
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(9) Load Transient Response

XC6215x092

- **tr=tf=5μsec, VIN=VCE=1.9V, CIN=1.0μF(ceramic), CL=0.1μF(ceramic)**
- **Output Voltage**
- **Output Current**
- **Time (200μsec/div)**

XC6215x152

- **tr=tf=5μsec, VIN=VCE=2.5V, CIN=1.0μF(ceramic), CL=0.1μF(ceramic)**
- **Output Voltage**
- **Output Current**
- **Time (200μsec/div)**

XC6215x092

- **tr=tf=5μsec, VIN=VCE=1.9V, CIN=1.0μF(ceramic), CL=1.0μF(ceramic)**
- **Output Voltage**
- **Output Current**
- **Time (600μsec/div)**

XC6215x152

- **tr=tf=5μsec, VIN=VCE=2.5V, CIN=1.0μF(ceramic), CL=1.0μF(ceramic)**
- **Output Voltage**
- **Output Current**
- **Time (400μsec/div)**

XC6215x152

- **tr=tf=5μsec, VIN=VCE=2.5V, CIN=1.0μF(ceramic), CL=0.1μF(ceramic)**
- **Output Voltage**
- **Output Current**
- **Time (200μsec/div)**
(9) Load Transient Response (Continued)

- **XC6215x302**
 - Output Voltage \(V_{OUT} \) (V)
 - Output Current \(I_{OUT} \) (mA)
 - Time (400μsec/div)

- **XC6215x302**
 - Output Voltage \(V_{OUT} \) (V)
 - Output Current \(I_{OUT} \) (mA)
 - Time (600μsec/div)

- **XC6215x502**
 - Output Voltage \(V_{OUT} \) (V)
 - Output Current \(I_{OUT} \) (mA)
 - Time (400μsec/div)

Conditions:
- \(tr_{in}=5\mu\text{sec}, VIN=V_{CE}=4.0\text{V}, CIN=1.0\mu\text{F(ceramic)}, CL=0.1\mu\text{F(ceramic)} \)
- \(tr_{in}=5\mu\text{sec}, VIN=V_{CE}=6.0\text{V}, CIN=1.0\mu\text{F(ceramic)}, CL=1.0\mu\text{F(ceramic)} \)
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(9) Load Transient Response (Continued)

(10) Rising Response Time

XC6215x092

\[t_{\text{r/f}}=5\mu\text{sec}, \ VIN=V_{CE}=6.0\text{V}, \ C_{IN}=1.0\mu\text{F}(\text{ceramic}), CL=0.1\mu\text{F}(\text{ceramic})\]

\[t_{\text{r}}=5\mu\text{sec}, \ VIN=V_{CE}=0\text{V} \rightarrow 1.9\text{V}, \ I_{OUT}=1\text{mA}, CL=0.1\mu\text{F}(\text{ceramic})\]

\[t_{\text{r}}=5\mu\text{sec}, \ VIN=V_{CE}=0\text{V} \rightarrow 2.5\text{V}, \ I_{OUT}=1\text{mA}, CL=0.1\mu\text{F}(\text{ceramic})\]
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(10) Rising Response Time (Continued)

XC6215 Series

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

<table>
<thead>
<tr>
<th>Model</th>
<th>Input Voltage V_{IN} (V)</th>
<th>Output Voltage V_{OUT} (V)</th>
<th>Time (μsec/div)</th>
<th>$t_{r}=5\mu\text{sec}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>XC6215x152</td>
<td>$V_{IN}=V_{CE}=0V \rightarrow 2.5V$</td>
<td>$V_{OUT}=2.5V, I_{OUT}=30mA, CL=0.1\mu\text{F}(\text{ceramic})$</td>
<td>50μsec/div</td>
<td></td>
</tr>
<tr>
<td>XC6215x302</td>
<td>$V_{IN}=V_{CE}=0V \rightarrow 4.0V$</td>
<td>$V_{OUT}=4.0V, I_{OUT}=1mA, CL=0.1\mu\text{F}(\text{ceramic})$</td>
<td>100μsec/div</td>
<td></td>
</tr>
<tr>
<td>XC6215x502</td>
<td>$V_{IN}=V_{CE}=0V \rightarrow 6.0V$</td>
<td>$V_{OUT}=6.0V, I_{OUT}=1mA, CL=0.1\mu\text{F}(\text{ceramic})$</td>
<td>200μsec/div</td>
<td></td>
</tr>
</tbody>
</table>
(10) Rising Response Time (Continued)

(11) CE Rising Response Time (For XC6215B Type)

XC6215x502

\[\begin{align*}
\text{Input Voltage} & \quad \text{Output Voltage} \\
\text{Time (200μsec/div)} & \\
\end{align*} \]

\[\begin{align*}
\text{Input Voltage} & \quad \text{Output Voltage} \\
\text{Time (200μsec/div)} & \\
\end{align*} \]

XC6215B092

\[\begin{align*}
\text{CE Input Voltage} & \quad \text{Output Voltage} \\
\text{Time (50μsec/div)} & \\
\end{align*} \]

\[\begin{align*}
\text{CE Input Voltage} & \quad \text{Output Voltage} \\
\text{Time (50μsec/div)} & \\
\end{align*} \]

XC6215B152

\[\begin{align*}
\text{CE Input Voltage} & \quad \text{Output Voltage} \\
\text{Time (100μsec/div)} & \\
\end{align*} \]
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(11) CE Rising Response Time (Continued)

XC6215012

- **Time (100μsec/div)**
- **Output Voltage V OUT (V)**
- **CE Input Voltage V CE (V)**

tr=5μsec, VIN=2.5V, VCE =0 → 2.5V, IOUT=30mA, CL=0.1μF(ceramic)

XC62150152

- **Time (100μsec/div)**
- **Output Voltage V OUT (V)**
- **CE Input Voltage V CE (V)**

tr=5μsec, VIN=2.5V, VCE =0 → 2.5V, IOUT=100mA, CL=0.1μF(ceramic)

XC62150302

- **Time (200μsec/div)**
- **Output Voltage V OUT (V)**
- **CE Input Voltage V CE (V)**

tr=5μsec, VIN=4.0V, VCE =0 → 4.0V, IOUT=1mA, CL=0.1μF(ceramic)

XC62150302

- **Time (200μsec/div)**
- **Output Voltage V OUT (V)**
- **CE Input Voltage V CE (V)**

tr=5μsec, VIN=4.0V, VCE =0 → 4.0V, IOUT=30mA, CL=0.1μF(ceramic)

XC62150302

- **Time (200μsec/div)**
- **Output Voltage V OUT (V)**
- **CE Input Voltage V CE (V)**

tr=5μsec, VIN=4.0V, VCE =0 → 4.0V, IOUT=100mA, CL=0.1μF(ceramic)

XC62150502

- **Time (200μsec/div)**
- **Output Voltage V OUT (V)**
- **CE Input Voltage V CE (V)**

tr=5μsec, VIN=6.0V, VCE =0 → 6.0V, IOUT=1mA, CL=0.1μF(ceramic)
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(11) CE Rising Response Time (For XC6215 Type)

XC6215B502

![Graph showing CE Rising Response Time](image1)

XC6215B502

![Graph showing CE Rising Response Time](image2)

(12) Ripple Rejection Rate

XC6215x092

![Graph showing Ripple Rejection Rate](image3)

XC6215x152

![Graph showing Ripple Rejection Rate](image4)

XC6215x302

![Graph showing Ripple Rejection Rate](image5)

XC6215x502

![Graph showing Ripple Rejection Rate](image6)
PACKAGING INFORMATION

For the latest package information go to, www.torexsemi.com/technical-support/packages

<table>
<thead>
<tr>
<th>PACKAGE</th>
<th>OUTLINE / LAND PATTERN</th>
<th>THERMAL CHARACTERISTICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>USP-3</td>
<td>USP-3 PKG</td>
<td>Standard Board</td>
</tr>
<tr>
<td>USP-4</td>
<td>USP-4 PKG</td>
<td>Standard Board</td>
</tr>
<tr>
<td>SOT-25</td>
<td>SOT-25 PKG</td>
<td>Standard Board</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JESD51-7 Board</td>
</tr>
<tr>
<td>SSOT-24</td>
<td>SSOT-24 PKG</td>
<td>Standard Board</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JESD51-7 Board</td>
</tr>
<tr>
<td>USPN-4</td>
<td>USPN-4 PKG</td>
<td>Standard Board</td>
</tr>
<tr>
<td>USP-6B06</td>
<td>USP-6B06 PKG</td>
<td>Standard Board</td>
</tr>
</tbody>
</table>
MARKING RULE

SSOT-24

- **①** represents type of regulator and output voltage range

<table>
<thead>
<tr>
<th>MARK</th>
<th>TYPE</th>
<th>OUTPUT VOLTAGE RANGE</th>
<th>PRODUCT SERIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>CE pin, High Active with no pull-down resistor built in</td>
<td>0.9V ~ 3.0V</td>
<td>XC6215Bxxxxx</td>
</tr>
<tr>
<td>U</td>
<td>3.1V ~ 5.0V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **②** represents decimal point of output voltage

<table>
<thead>
<tr>
<th>MARK</th>
<th>OUTPUT VOLTAGE (V)</th>
<th>MARK</th>
<th>OUTPUT VOLTAGE (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>- 3.1</td>
<td>F</td>
<td>1.6 4.6 -</td>
</tr>
<tr>
<td>1</td>
<td>- 3.2</td>
<td>H</td>
<td>1.7 4.7 -</td>
</tr>
<tr>
<td>2</td>
<td>- 3.3</td>
<td>K</td>
<td>1.8 4.8 -</td>
</tr>
<tr>
<td>3</td>
<td>- 3.4</td>
<td>L</td>
<td>1.9 4.9 -</td>
</tr>
<tr>
<td>4</td>
<td>- 3.5</td>
<td>M</td>
<td>2.0 5.0 -</td>
</tr>
<tr>
<td>5</td>
<td>- 3.6</td>
<td>N</td>
<td>2.1 -</td>
</tr>
<tr>
<td>6</td>
<td>- 3.7</td>
<td>P</td>
<td>2.2 -</td>
</tr>
<tr>
<td>7</td>
<td>- 3.8</td>
<td>R</td>
<td>2.3 -</td>
</tr>
<tr>
<td>8</td>
<td>0.9 3.9</td>
<td>S</td>
<td>2.4 -</td>
</tr>
<tr>
<td>9</td>
<td>1.0 4.0</td>
<td>T</td>
<td>2.5 -</td>
</tr>
<tr>
<td>A</td>
<td>1.1 4.1</td>
<td>U</td>
<td>2.6 -</td>
</tr>
<tr>
<td>B</td>
<td>1.2 4.2</td>
<td>V</td>
<td>2.7 -</td>
</tr>
<tr>
<td>C</td>
<td>1.3 4.3</td>
<td>X</td>
<td>2.8 -</td>
</tr>
<tr>
<td>D</td>
<td>1.4 4.4</td>
<td>Y</td>
<td>2.9 -</td>
</tr>
<tr>
<td>E</td>
<td>1.5 4.5</td>
<td>Z</td>
<td>3.0 -</td>
</tr>
</tbody>
</table>

- **③** represents production lot number

 0 to 9, A to Z repeated. (G, I, J, O, Q, W excluded)

 NOTE: No character inversion used.
MARKING RULE (Continued)

USP-4, USP-3

1. **MARK**

<table>
<thead>
<tr>
<th>MARK</th>
<th>PRODUCT SERIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>XC6215xxxxxx</td>
</tr>
</tbody>
</table>

2. **represents type of regulator and output voltage range**

<table>
<thead>
<tr>
<th>MARK</th>
<th>TYPE</th>
<th>OUTPUT VOLTAGE RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>CE pin, High Active with no pull-down resistor built in</td>
<td>0.9V ~ 3.0V</td>
</tr>
<tr>
<td>U</td>
<td></td>
<td>3.1V ~ 5.0V</td>
</tr>
</tbody>
</table>

3. **represents output voltage**

<table>
<thead>
<tr>
<th>MARK</th>
<th>OUTPUT VOLTAGE (V)</th>
<th>MARK</th>
<th>OUTPUT VOLTAGE (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>F</td>
<td>1.6</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>H</td>
<td>1.7</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>K</td>
<td>1.8</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>L</td>
<td>1.9</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>M</td>
<td>2.0</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>N</td>
<td>2.1</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>P</td>
<td>2.2</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>R</td>
<td>2.3</td>
</tr>
<tr>
<td>8</td>
<td>0.9</td>
<td>S</td>
<td>2.4</td>
</tr>
<tr>
<td>9</td>
<td>1.0</td>
<td>T</td>
<td>2.5</td>
</tr>
<tr>
<td>A</td>
<td>1.1</td>
<td>U</td>
<td>2.6</td>
</tr>
<tr>
<td>B</td>
<td>1.2</td>
<td>V</td>
<td>2.7</td>
</tr>
<tr>
<td>C</td>
<td>1.3</td>
<td>X</td>
<td>2.8</td>
</tr>
<tr>
<td>D</td>
<td>1.4</td>
<td>Y</td>
<td>2.9</td>
</tr>
<tr>
<td>E</td>
<td>1.5</td>
<td>Z</td>
<td>3.0</td>
</tr>
</tbody>
</table>

4. **represents production lot number**

- 0 to 9, A to Z repeated. (G, I, J, O, Q, W excluded)

NOTE: No character inversion used.
MARKING RULE (Continued)

1. **SOT-25**
 - MARKING RULE (Continued)
 - **MARK** | **PRODUCT SERIES**
 - E | XC6215xxxxxx

2. **USPN-4**
 - **MARK** | **TYPE** | **OUTPUT VOLTAGE RANGE** | **PRODUCT SERIES**
 - T | CE pin, High Active with no pull-down resistor built in | 0.9V~3.0V | XC6215xxxxxx
 - U | 3.1V~5.0V |

3. **USP-6B06**
 - **MARK** | **OUTPUT VOLTAGE (V)** | **MARK** | **OUTPUT VOLTAGE (V)**
 - 0 | - | F | 1.6 | 4.6 | -
 - 1 | - | H | 1.7 | 4.7 | -
 - 2 | - | K | 1.8 | 4.8 | -
 - 3 | - | L | 1.9 | 4.9 | -
 - 4 | - | M | 2.0 | 5.0 | -
 - 5 | - | N | 2.1 | - | -
 - 6 | - | P | 2.2 | - | -
 - 7 | - | R | 2.3 | - | -
 - 8 | 0.9 | S | 2.4 | - | -
 - 9 | 1.0 | T | 2.5 | - | -
 - A | 1.1 | U | 2.6 | - | -
 - B | 1.2 | V | 2.7 | - | -
 - C | 1.3 | X | 2.8 | - | -
 - D | 1.4 | Y | 2.9 | - | -
 - E | 1.5 | Z | 3.0 | - | -

4. **USP-6B06**
 - **MARK** | **TYPE** | **OUTPUT VOLTAGE RANGE** | **PRODUCT SERIES**
 - T | 0.9V~3.0V | XC6215xxxxxx

5. **USP-6B06**
 - **MARK** | **TYPE** | **OUTPUT VOLTAGE RANGE** | **PRODUCT SERIES**
 - U | 3.1V~5.0V |

NOTE: No character inversion used.

MARKING RULE (Continued)

1. **SOT-25**
 - **MARK** | **PRODUCT SERIES**
 - E | XC6215xxxxxx

2. **USPN-4**
 - **MARK** | **TYPE** | **OUTPUT VOLTAGE RANGE** | **PRODUCT SERIES**
 - T | CE pin, High Active with no pull-down resistor built in | 0.9V~3.0V | XC6215xxxxxx
 - U | 3.1V~5.0V |

3. **USP-6B06**
 - **MARK** | **OUTPUT VOLTAGE (V)** | **MARK** | **OUTPUT VOLTAGE (V)**
 - 0 | - | F | 1.6 | 4.6 | -
 - 1 | - | H | 1.7 | 4.7 | -
 - 2 | - | K | 1.8 | 4.8 | -
 - 3 | - | L | 1.9 | 4.9 | -
 - 4 | - | M | 2.0 | 5.0 | -
 - 5 | - | N | 2.1 | - | -
 - 6 | - | P | 2.2 | - | -
 - 7 | - | R | 2.3 | - | -
 - 8 | 0.9 | S | 2.4 | - | -
 - 9 | 1.0 | T | 2.5 | - | -
 - A | 1.1 | U | 2.6 | - | -
 - B | 1.2 | V | 2.7 | - | -
 - C | 1.3 | X | 2.8 | - | -
 - D | 1.4 | Y | 2.9 | - | -
 - E | 1.5 | Z | 3.0 | - | -

4. **USP-6B06**
 - **MARK** | **TYPE** | **OUTPUT VOLTAGE RANGE** | **PRODUCT SERIES**
 - T | 0.9V~3.0V | XC6215xxxxxx

5. **USP-6B06**
 - **MARK** | **TYPE** | **OUTPUT VOLTAGE RANGE** | **PRODUCT SERIES**
 - U | 3.1V~5.0V |

NOTE: No character inversion used.
1. The product and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date.

2. The information in this datasheet is intended to illustrate the operation and characteristics of our products. We neither make warranties or representations with respect to the accuracy or completeness of the information contained in this datasheet nor grant any license to any intellectual property rights of ours or any third party concerning with the information in this datasheet.

3. Applicable export control laws and regulations should be complied and the procedures required by such laws and regulations should also be followed, when the product or any information contained in this datasheet is exported.

4. The product is neither intended nor warranted for use in equipment of systems which require extremely high levels of quality and/or reliability and/or a malfunction or failure which may cause loss of human life, bodily injury, serious property damage including but not limited to devices or equipment used in 1) nuclear facilities, 2) aerospace industry, 3) medical facilities, 4) automobile industry and other transportation industry and 5) safety devices and safety equipment to control combustions and explosions. Do not use the product for the above use unless agreed by us in writing in advance.

5. Although we make continuous efforts to improve the quality and reliability of our products; nevertheless Semiconductors are likely to fail with a certain probability. So in order to prevent personal injury and/or property damage resulting from such failure, customers are required to incorporate adequate safety measures in their designs, such as system fail safes, redundancy and fire prevention features.

6. Our products are not designed to be Radiation-resistant.

7. Please use the product listed in this datasheet within the specified ranges.

8. We assume no responsibility for damage or loss due to abnormal use.

9. All rights reserved. No part of this datasheet may be copied or reproduced unless agreed by Torex Semiconductor Ltd in writing in advance.

TOREX SEMICONDUCTOR LTD.