Positive Voltage Regulator with (Output ON/OFF)

■GENERAL DESCRIPTION

The XC 62 H series are highly precise, low power consumption, positive voltage regulators, manufactured using CMOS and laser trimming technologies. The series consists of a high precision voltage reference, an error correction circuit, and an output driver with current limitation.
By way of the CE function, with output turned off, the series enters standby. In the stand-by mode, power consumption is greatly reduced.

APPLICATIONS

- Multi-function power supplies
- Voltage supplies for cellular phones
- Digital still cameras / Camcorders
- Note PC / Tablet PC

FEATURES
Maximum Output Current
: 165 mA (within max Pd, Vout=3.0V)
Output Voltage Range: 2.0V $\sim 6.0 \mathrm{~V}$ (0.1 V increments)
(1.5V $\sim 1.9 \mathrm{~V}$ semi-custom)

Highly Accurate
: $\pm 2 \%$
($\pm 1 \%$ for semi-custom products)
Low Power Consumption
: $3 \mu \mathrm{~A}$ (TYP.) (Vout=3V,Output enabled)
: $0.1 \mu \mathrm{~A}$ (TYP.) (Output disabled)
Output Voltage Temperature Characteristics
$: \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (TYP.)
Line Regulation : $0.2 \% / \mathrm{V}$ (TYP.)
CMOS Low Power Consumption

Dropout Voltage	$: 0.18 \mathrm{~V} @ 60 \mathrm{~mA}$
	$: 0.58 \mathrm{~V} @ 160 \mathrm{~mA}$
Packages	$:$ SOT-25
	SOT-89-5
	USP-6B

Environmentally Friendly :EU RoHS Compliant, Pb Free

■TYPICALAPPLICATION CIRCUIT

-TYPICAL PERFORMANCE CHARACTERISTICS

XC62HR3002(3V)

■PIN CONFIGURATION

SOT-25 (TOP VIEW)

SOT-89-5
(TOP VIEW)

USP-6B (BOTTOM VIEW)
*The dissipation pad for the USP-6B package should be solder-plated in recommended mount pattern and metal masking so as to enhance mounting strength and heat release. If the pad needs to be connected to other pins, it should be connected to the VIN (No.1) pin.

■PIN ASSIGNMENT

PIN NUMBER			PIN NAME	FUNCTIONS
SOT-25	SOT-89-5	USP-6B		
1	4	2,5	NC	No Connection
2	2	1	VIN	Supply Voltage Input
3	3	6	CE	ON/OFF Chip Enable
4	1	4	Vss	Ground
5	5	3	Vout	Regulated Output Voltage

■FUNCTIONS

CE	OPERATION
L	OFF
H	ON
OPEN	Undefined state

-PRODUCT CLASSIFICATION

Ordering Information

XC62H(1)(2)(3)(4)(5)(7)-8) ${ }^{(+1)}$

DESIGNATOR	ITEM	SYMBOL	DESCRIPTION
(1)	CE Pin Logic	R	Positive
(2)(3)	Output Voltage	$20 \sim 60$	$\begin{aligned} \hline \text { e.g. } & \text { Vout } 3.0 \mathrm{~V} \rightarrow(2)=3,(3)=0 \\ & \text { Vout } 5.0 \mathrm{~V} \rightarrow(2)=5,(3)=0 \end{aligned}$
(4)	Temperature Characteristics	0	$\pm 100 \mathrm{ppm}$ (TYP.)
(5)	Output Voltage Accuracy	1	$\pm 1 \%$ (semi-custom)
		2	$\pm 2 \%$
(6)7-8	Packages (Order Unit)	MR-G	SOT-25 (3,000pcs/Reel)
		PR-G	SOT-89-5 (1,000pcs/Reel)
		DR-G	USP-6B (3,000pcs/Reel)

${ }^{\left({ }^{* 1}\right)}$ The "-G" suffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant.

BLOCK DIAGRAM

■ABSOLUTE MAXIMUM RATINGS

PARAMETER		SYMBOL	RATINGS	UNITS
Input Voltage		Vin	12.0	V
Output Current		IOUT	$500{ }^{(* 1)}$	mA
Output Voltage		Vout	Vss -0.3 ~ VIN +1.3	V
CE Input Voltage		Vce	Vss -0.3 ~ VIN +1.3	V
Power Dissipation	SOT-25	Pd	150	mW
			760(JESD51-7 Board)) ${ }^{\left({ }^{2} 2\right)}$	
	SOT-89-5		500	
			1750(JESD51-7 Board)) ${ }^{(22)}$	
	USP-6B		120	
			1000 (40mm x 40mm Standard Board) ${ }^{\left({ }^{2}\right)}$	
Operating Ambient Temperature		Topr	-30 ~ 80	${ }^{\circ} \mathrm{C}$
Storage Temperature		Tstg	-40 ~ 125	${ }^{\circ} \mathrm{C}$

(*1) Please use within the range of $\mathrm{I}_{\text {OUT }} \leqq \mathrm{Pd} /\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right)$
(*2) The power dissipation figure shown is PCB mounted and is for reference only. The mounting condition is please refer to PACKAGING INFORMATION.

■ELECTRICAL CHARACTERISTICS

- Low Voltage

$\mathrm{Ta}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	CIRCUIT
Output Voltage	Vout(E) ${ }^{(* 2)}$	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }(T)^{\left({ }^{* 1}\right)}+1.0 \mathrm{~V}} \\ & \text { lout }=0.5 \mathrm{~mA} \end{aligned}$	$\begin{gathered} \times 0.98 \\ E 1-1(7) \end{gathered}$	Vout(t)	$\begin{gathered} \times 1.02 \\ E 1-2^{(* 7)} \end{gathered}$	V	1
Maximum Output Current	loutmax	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }(\mathrm{T})}+1.0 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }(\mathrm{E})} \geqq \mathrm{V}_{\text {OUT }(T) \times 0.9} \end{aligned}$	$E 2(7)$			mA	1
Load Regulation	$\Delta V_{\text {OUT }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {OUT }(\mathrm{T})+1.0 \mathrm{~V}} \\ & 1 \mathrm{~mA} \leqq \text { lout } \leqq 30 \mathrm{~mA} \end{aligned}$		15	40	mV	1
Dropout Voltage ${ }^{(* 3)}$	Vdif	$\begin{aligned} & \text { Output Voltage: } 1.5 \sim 1.7 \mathrm{~V} \\ & \text { lout }=10 \mathrm{~mA}, ~ \mathrm{~V}_{\mathrm{CE}}=\mathrm{V}_{\text {IN }} \end{aligned}$	1.0		500	mV	1
		Output Voltage:1.8~1.9V lout $=20 \mathrm{~mA}, ~ V_{\text {CE }}=\mathrm{V}_{\text {IN }}$	1.0		300		
Supply Current 1	Iss1	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CE }}=\mathrm{V}_{\text {OUt }}(\mathrm{T})+1.0 \mathrm{~V}$	2.0		6.8	$\mu \mathrm{A}$	2
Supply Current 2	Iss2	$\mathrm{VIN}=\mathrm{V}_{\text {OUT }}(\mathrm{T})+1.0 \mathrm{~V}, \mathrm{~V}_{\text {CEE }}=\mathrm{V}_{\text {SS }}$			0.1	$\mu \mathrm{A}$	2
Line Regulation	$\Delta V_{\text {Out }} /$ ($\left.\Delta \mathrm{V}_{\text {IN }} \cdot \mathrm{V}_{\text {OUt }}\right)$	lout 0.5 mA $\mathrm{V}_{\text {OUT }(T)}+1.0 \mathrm{~V} \leqq \mathrm{~V}_{\text {IN }} \leqq 10 \mathrm{~V}$		0.15	0.25	\%/V	1
Input Voltage	VIN		2		10	V	-
Output Voltage Temperature Characteristics	Δ Vout/ (Δ Topr \cdot Vout)	$\begin{aligned} & \text { lout }=0.5 \mathrm{~mA} \\ & -30^{\circ} \mathrm{C} \leqq \mathrm{Topr} \leqq 80^{\circ} \mathrm{C} \end{aligned}$		± 100		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$	1
CE "High" Voltage	$V_{\text {ceh }}$		1.5		10	V	1
CE "Low" Voltage	$V_{\text {cel }}$		Vss		0.25	V	1
CE "High" Current	$I_{\text {ceh }}$	$\mathrm{V}_{\text {CE }}=\mathrm{V}_{\text {IN }}$			0.1	$\mu \mathrm{A}$	2
CE "Low" Current	Icel	$\mathrm{V}_{\text {CE }}=\mathrm{V}_{\text {SS }}$	-0.2	-0.05	0	$\mu \mathrm{A}$	2

NOTE:
*1: $\mathrm{V}_{\text {OUT(T) }}=$ Specified output voltage .
 maintaining a certain lout value).
3: Vdif= $\left\{\mathrm{V}_{\mathrm{IN} 1}{ }^{(5)}\right.$ - $\left.\mathrm{V}_{\text {out } 1}{ }^{(* 4)}\right\}$
*4: $\mathrm{V}_{\text {OUT1 }}=\mathrm{A}$ voltage equal to 98% of the output voltage whenever an amply stabilized lout $\left\{\mathrm{V}_{\text {OUT }(T)}+1.0 \mathrm{~V}\right\}$ is input.
${ }^{*} 5$: $\mathrm{V}_{\mathrm{IN} 1}=$ The input voltage when $\mathrm{V}_{\text {out } 1}$ appears as input voltage is gradually decreased.
*6: Over $\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V}$ of input voltage is necessary.
*7: Refer to the "Voltage chart"

■ELECTRICAL CHARACTERISTICS (Continued)

- Low Voltage Chart

SYMBOL	E1-1	E1-2	E2
PARAMETER SETTING OUTPUT VOLTAGE(V)	OUTPUT VOLTAGE (V)		MAXIMUM OUTPUT CURRENT (mA)
$V_{\text {out(t) }}$	$\mathrm{V}_{\text {Out(E) }}$		loutmax
	MIN	MAX	MIN
1.5	1.470	1.530	60
1.6	1.568	1.632	70
1.7	1.666	1.734	80
1.8	1.764	1.836	90
1.9	1.862	1.938	100

Note) The symbol is as same as that in the chart of electrical characteristics.

■ELECTRICAL CHARACTERISTICS (Continued)

- Standard Voltage $\quad \mathrm{Ta}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	CIRCUIT
Output Voltage (2\%) Output Voltage (1\%)	Vout(E) ${ }^{(* 2)}$	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }(T)^{(* 1)}}+1.0 \mathrm{~V} \\ & \text { lout }=40 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \times 0.98 \\ & \times 0.99 \end{aligned}$	Vout(t) E1 (*6)	$\begin{array}{r} \times 1.02 \\ \times 1.01 \end{array}$	V	1
Maximum Output Current	loutmax	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }(T)}+1.0 \mathrm{~V} \\ & \operatorname{Vout}(\mathrm{E}) \mathrm{V} \text { OUT }(\mathrm{T}) \times 0.9 \end{aligned}$	E2 ${ }^{*}{ }^{*}$)			mA	1
Load Regulation	$\Delta \mathrm{V}_{\text {Out }}$	$\begin{aligned} & \left.\mathrm{V}_{\text {IN }}=\mathrm{VOUT}_{\text {OT }} \mathrm{T}\right)+1.0 \mathrm{~V} \\ & 1 \mathrm{~mA} \leqq \text { lout } \leqq\left\{\mathrm{C}_{1}{ }^{(77)}\right\} \mathrm{mA} \end{aligned}$		E3-1 ${ }^{(* 6)}$	E3-2**)	mV	1
Dropout Voltage ${ }^{(* 3)}$	Vdif1	lout $=\left\{\mathrm{C} 2^{\left({ }^{(77)}\right)}\right\} \mathrm{mA}$		E4-1 $\left.{ }^{*} 6\right)$	E4-2**)	mV	1
	Vdif2	lout $=\left\{\mathrm{C} 3{ }^{(77)}\right\} \mathrm{mA}$		E5-1(*6)	E5-2(*)	mV	1
Supply Current 1	Iss 1	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CE }}=\mathrm{V}_{\text {OUT }}(\mathrm{T})+1.0 \mathrm{~V}$		E6-1 ${ }^{*} 6$)	E6-2 ${ }^{* 6)}$	$\mu \mathrm{A}$	2
Supply Current 2	Iss2	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}(\mathrm{T})+1.0 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=\mathrm{V}_{\text {SS }}$			0.1	$\mu \mathrm{A}$	2
Line Regulation	$\begin{gathered} \Delta \mathrm{V} \text { out } /^{\left(\Delta \mathrm{V}_{\text {IN }} \cdot V_{\text {OUT }}\right)} \end{gathered}$	$\begin{aligned} & \text { lout }=40 \mathrm{~mA} \\ & \text { Vout(T) }+1.0 \mathrm{~V} \leqq \mathrm{~V}_{\text {IN }} \leqq 10.0 \mathrm{~V} \end{aligned}$		0.2	0.3	\%/V	1
Input Voltage	VIN				10	V	-
Output Voltage Temperature Characteristics	$\Delta V_{\text {Out }} /$ (Δ Topr $\cdot \mathrm{V}_{\text {out }}$)	$\begin{aligned} & \text { lout }=40 \mathrm{~mA} \\ & -30^{\circ} \mathrm{C} \leqq \mathrm{Topr} \leqq 80^{\circ} \mathrm{C} \end{aligned}$		± 100		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$	1
CE "High" Voltage	$\mathrm{V}_{\text {ceh }}$		1.5		10	V	1
CE "Low" Voltage	Vcel		Vss		0.25	V	1
CE "High" Current	Ісен	$\mathrm{V}_{\text {ce }}=\mathrm{V}_{\text {IN }}$			0.1	$\mu \mathrm{A}$	2
CE "Low" Current	Icel	$\mathrm{V}_{\text {CE }}=\mathrm{V}_{\text {SS }}$	-0.2	-0.05	0	$\mu \mathrm{A}$	2

NOTE:
*1: Vout(T)=Specified output voltage .
*2: $\mathrm{V}_{\text {OUT(E) }}=$ Effective output voltage (i.e. the output voltage when " $\mathrm{V}_{\text {OUT(T) }}+1.0 \mathrm{~V}$ " is provided at the V_{IN} pin while maintaining a certain lout value).
3: Vdif $=\left\{\mathrm{V}_{\text {IN1 }}{ }^{(5)}-\mathrm{V}_{\text {OUT1 }}{ }^{(* 4)}\right\}$
*4: $\mathrm{V}_{\text {Out1 }}=\mathrm{A}$ voltage equal to 98% of the output voltage whenever an amply stabilized $\mathrm{l}_{\text {out }}\left\{\mathrm{V}_{\text {OuT(T) }}+1.0 \mathrm{~V}\right\}$ is input.
${ }^{*} 5: \mathrm{V}_{\mathbb{N} 1}=$ The input voltage when $\mathrm{V}_{\text {OUT1 }}$ appears as input voltage is gradually decreased.
*6: Refer to the "Standard Voltage, Voltage chart"
*7: Refer to the "Voltage chart"

■ELECTRICAL CHARACTERISTICS (Continued)

- Standard Voltage, Voltage chart

SYMBOL	E1-1	E1-2	E1-1	E1-2	E2	E3-1	E3-2	E4-1	E4-2	E5-1	E5-2	E6-1	E6-2
PARAMETER SETANG OUTPUT VOLTAGE(V)	OUTPUT VOLTAGE (V) (2\% products)		OUTPUT VOLTAGE (V) (1\% products)		MAXIMUM OUTPUT CURRENT (mA)	$\begin{aligned} & \text { LOAD } \\ & \text { REGULATION } \\ & (\mathrm{mV}) \end{aligned}$		DROPOUT VOLTAGE (mV)				SUPPLY CURRENT1 ($\mu \mathrm{A}$)	
$V_{\text {Out(T) }}$	$\mathrm{V}_{\text {OUT(E) }}$		$\mathrm{V}_{\text {OUT(E) }}$		$\mathrm{I}_{\text {OUTmax }}$	$\Delta \mathrm{V}_{\text {OUT }}$		Vdif1		Vdif2		$\mathrm{I}_{\text {SS1 }}$	
	MIN	MAX	MIN	MAX	MIN	TYP	MAX	TYP	MAX	TYP	MAX	TYP	MAX
2.0	1.960	2.040	1.980	2.020	115	45	90	180	360	580	880	2.9	7.9
2.1	2.058	2.142	2.079	2.121	115	45	90	180	360	580	880	2.9	7.9
2.2	2.156	2.244	2.178	2.222	115	45	90	180	360	580	880	2.9	7.9
2.3	2.254	2.346	2.277	2.323	115	45	90	180	360	580	880	2.9	7.9
2.4	2.352	2.448	2.376	2.424	115	45	90	180	360	580	880	2.9	7.9
2.5	2.450	2.550	2.475	2.525	115	45	90	180	360	580	880	2.9	7.9
2.6	2.548	2.652	2.574	2.626	115	45	90	180	360	580	880	2.9	7.9
2.7	2.646	2.754	2.673	2.727	115	45	90	180	360	580	880	2.9	7.9
2.8	2.744	2.856	2.772	2.828	115	45	90	180	360	580	880	2.9	7.9
2.9	2.842	2.958	2.871	2.929	115	45	90	180	360	580	880	2.9	7.9
3.0	2.940	3.060	2.970	3.030	165	45	90	180	360	580	880	2.9	7.9
3.1	3.038	3.162	3.069	3.131	165	45	90	180	360	580	880	3.0	8.0
3.2	3.136	3.264	3.168	3.232	165	45	90	180	360	580	880	3.0	8.0
3.3	3.234	3.366	3.267	3.333	165	45	90	180	360	580	880	3.0	8.0
3.4	3.332	3.468	3.366	3.434	165	45	90	180	360	580	880	3.0	8.0
3.5	3.430	3.570	3.465	3.535	165	45	90	180	360	580	880	3.0	8.0
3.6	3.528	3.672	3.564	3.636	165	45	90	180	360	580	880	3.0	8.0
3.7	3.626	3.774	3.663	3.737	165	45	90	180	360	580	880	3.0	8.0
3.8	3.724	3.876	3.762	3.838	165	45	90	180	360	580	880	3.0	8.0
3.9	3.822	3.978	3.861	3.939	165	45	90	180	360	580	880	3.0	8.0
4.0	3.920	4.080	3.960	4.040	200	45	90	170	340	560	840	3.1	8.1
4.1	4.018	4.182	4.059	4.141	200	45	90	170	340	560	840	3.1	8.1
4.2	4.116	4.284	4.158	4.242	200	45	90	170	340	560	840	3.1	8.1
4.3	4.214	4.386	4.257	4.343	200	45	90	170	340	560	840	3.1	8.1
4.4	4.312	4.488	4.356	4.444	200	45	90	170	340	560	840	3.1	8.1
4.5	4.410	4.590	4.455	4.545	200	45	90	170	340	560	840	3.1	8.1
4.6	4.508	4.692	4.554	4.646	200	45	90	170	340	560	840	3.1	8.1
4.7	4.606	4.794	4.653	4.747	200	45	90	170	340	560	840	3.1	8.1
4.8	4.704	4.896	4.752	4.848	200	45	90	170	340	560	840	3.1	8.1
4.9	4.802	4.998	4.851	4.949	200	45	90	170	340	560	840	3.1	8.1
5.0	4.900	5.100	4.950	5.050	220	40	80	165	320	540	820	3.1	8.1
5.1	4.998	5.202	5.049	5.151	220	40	80	165	320	540	820	3.1	8.1
5.2	5.096	5.304	5.148	5.252	220	40	80	165	320	540	820	3.1	8.1
5.3	5.194	5.406	5.247	5.353	220	40	80	165	320	540	820	3.1	8.1
5.4	5.292	5.508	5.346	5.454	220	40	80	165	320	540	820	3.1	8.1
5.5	5.390	5.610	5.445	5.555	220	40	80	165	320	540	820	3.1	8.1
5.6	5.488	5.712	5.544	5.656	220	40	80	165	320	540	820	3.1	8.1
5.7	5.586	5.814	5.643	5.757	220	40	80	165	320	540	820	3.1	8.1
5.8	5.684	5.916	5.742	5.858	220	40	80	165	320	540	820	3.1	8.1
5.9	5.782	6.018	5.841	5.959	220	40	80	165	320	540	820	3.1	8.1
6.0	5.880	6.120	5.940	6.060	220	40	80	165	320	540	820	3.1	8.1

Note) The symbol is as same as that in the chart of electrical characteristics.

■ELECTRICAL CHARACTERISTICS (Continued)

SYMBOL	C1	C2	C3
	$\Delta \mathrm{V}_{\text {OUT }}$ CONDITIONS	Vdif1 CONDITIONS	Vdif2 CONDITIONS
	(mA)	(mA)	(mA)
$\mathrm{V}_{\text {OUt(T) }}$	lout CONDITIONS	lout CONDITIONS	lout CONDITIONS
2.0	60	40	100
2.1	60	40	100
2.2	60	40	100
2.3	60	40	100
2.4	60	40	100
2.5	60	40	100
2.6	60	40	100
2.7	60	40	100
2.8	60	40	100
2.9	60	40	100
3.0	80	60	160
3.1	80	60	160
3.2	80	60	160
3.3	80	60	160
3.4	80	60	160
3.5	80	60	160
3.6	80	60	160
3.7	80	60	160
3.8	80	60	160
3.9	80	60	160
4.0	100	80	180
4.1	100	80	180
4.2	100	80	180
4.3	100	80	180
4.4	100	80	180
4.5	100	80	180
4.6	100	80	180
4.7	100	80	180
4.8	100	80	180
4.9	100	80	180
5.0	100	100	200
5.1	100	100	200
5.2	100	100	200
5.3	100	100	200
5.4	100	100	200
5.5	100	100	200
5.6	100	100	200
5.7	100	100	200
5.8	100	100	200
5.9	100	100	200
6.0	100	100	200

■TEST CIRCUITS

Circuit 1

Circuit 2

■OPERATIONAL EXPLANATION

Output voltage control with the XC62H series:
The voltage divided by resistors R1 \& R2 is compared with the internal reference voltage by the error amplifier. The P -channel MOSFET, which is connected to the Vout pin, is then driven by the subsequent output signal. The output voltage at the Vout pin is controlled \& stabilized by a system of negative feedback. The current limit circuit operate in relation to the level of output current.

< Current Limiter >
The XC62H series has output current limiter of fixed current limiter circuit. When the output current reaches the current limit, the fixed current limiter circuit operates and the output voltage drops with keeping the output current.

<CE Pin>

The IC's internal circuitry can be operated or shutdown via the signal from the CE pin with the XC 62 H series. In shutdown mode, output at the Vout pin will be pulled down to the Vss level via R1 \& R2. Note that the XC62H series' regulator is "High Active/No Pull-Down", operations will become unstable with the CE pin open. We suggest that you use this IC with either a CE High level voltage or a CE Low level voltage input at the CE pin. If this IC is used with the correct specifications for the CE pin, the operational logic is fixed and the IC will operate normally. However, supply current may increase as a result of through current in the IC's internal circuitry.

<Input and Output Capacitors>

The XC62H series needs an output capacitor (C_{L}) for phase compensation. In order to ensure the stable phase compensation, please place an output capacitor of $1.0 \mu \mathrm{~F}$ at the $\mathrm{V}_{\text {out }}$ pin and V_{ss} pin as close as possible. For a stable power input, please connect an input capacitor $\left(\mathrm{C}_{\mathrm{IN}}\right)$ of $1.0 \mu \mathrm{~F}$ between the input pin $\left(\mathrm{V}_{\mathrm{IN}}\right)$ and the ground pin (V_{SS}).

■NOTES ON USE

1. Please use this IC within the stated maximum ratings. For temporary, transitional voltage drop or voltage rising phenomenon, the IC is liable to malfunction should the ratings be exceeded.
2. Where wiring impedance is high, operations may become unstable due to noise and/or phase lag depending on output current. Please strengthen V_{IN} and $\mathrm{V}_{\text {ss }}$ wiring in particular.
3. Please wire the input capacitor $\left(\mathrm{C}_{\mathbb{N}}\right)$ and the output capacitor $\left(\mathrm{C}_{\llcorner }\right)$as close to the IC as possible.

Should rapid input fluctuation or load fluctuation occur, please increase the capacitor value such as CIN or CLto stabilize the operation.
4. Torex places an importance on improving our products and their reliability.

We request that users incorporate fail-safe designs and post-aging protection treatment when using Torex products in their systems.

TYPICAL PERFORMANCE CHARACTERISTICS

(1) Output Voltage vs. Output Current

XC62HR5002(5V)

XC62HR3002(3V)

(2) Output Voltage vs. Input Voltage

XC62HR4002 (4V)

XC62HR4002 (4V)

XC62HR2002(2V)

XC62HR5002 (5V)

XC62HR4002 (4V)

■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(2) Output Voltage vs. Input Voltage (Continued)

(3) Dropout Voltage vs. Output Current

XC62HR3002(3V)

XC62HR2002(2V)

XC62HR4002 (4V)

XC62HR2002(2V)

■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(4) CE Pin Threshold Voltage vs. Input Voltage

(5) Supply Current vs. Input Voltage

XC62HR4002(4V)

XC62HR2002(2V)

XC62HR5002(5V)

■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(5) Supply Current vs. Input Voltage (Continued)

(6) Output Voltage vs. Ambient Temperature

XC62HR3002 (3V)

XC62HR3002(3V)

XC62HR2002(2V)

XC62HR4002(4V)

XC62HR2002(2V)

■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(7) Supply Current vs. Ambient Temperature

(8) Input Transient Response 1

XC62HR4002 (4V)

XC62HR5002 (5V)

XC62HR4002 (4V)

XC62HR5002 (5V)

XC62HR4002 (4V)

-TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(8) Input Transient Response 1 (Continued)

(9) Input Transient Response 2

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(9) Input Transient Response 2 (Continued)

XC62HR2002(2V)

(10) Load Transient Response

XC62HR4002 (4V)

XC62HR4002 (4V)

■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(10) Load Transient Response (Continued)

XC62HR2002(2V)

(11) CE Pin Transient Response

XC62HR4002(4V)

XC62HR4002(4V)

XC62HR5002(5V)

XC62HR4002(4V)

■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(11) CE Pin Transient Response (Continued)

XC62HR2002(2V)

(12) Ripple Rejection Rate

PACKAGING INFORMATION
For the latest package information go to, www.torexsemi.com/technical-support/packages

PACKAGE	OUTLINE / LAND PATTERN	THERMAL CHARACTERISTICS
SOT-25	$\underline{\text { SOT-25 PKG }}$	SOT-25 Power Dissipation
SOT-89-5	$\underline{\text { SOT-89-5 PKG }}$	$\underline{\text { SOT-89-5 Power Dissipation }}$
USP-6B	$\underline{\text { USP-6B PKG }}$	$\underline{\text { USP-6B Power Dissipation }}$

MARKING RULE

-SOT-25, SOT-89-5

SOT-25
(TOP VIEW)

SOT-89-5 (TOP VIEW)
(2) represents decimal number of the output voltage

MARK	VOLTAGE (V)
0	$(1) .0$
1	$(1.1$
2	$(1) 2$
3	$(1) .3$
4	$(1) .4$
5	$(1) .5$
6	$(1) .6$
7	$(1) .7$
8	$(1) 8$
9	$(1) .9$

(1) represents integer of the output voltage

MARK	VOLTAGE (V)
0	0.2
1	1.2
2	$2 .(2)$
3	3.2
4	4.2
5	5.2
6	$6 .(2)$

(3) represents temperature characteristics
\qquad
(4) represents production lot number 0 to 9 , A to Z repeated, reverse character 0 to 9 , A to Z repeated (G, I, J, O, Q, W excluded)

MARKING RULE

- USP-6B
(1) represents product series

MARK	PRODUCT SERIES
H	XC62HR*****

(2) represents CE pin logic

MARK	LOGIC	PRODUCT SERIES
R	Positive	XC62HR** 0 * ${ }^{*}$

USP-6B (TOP VIEW)
(3)(4) represents output voltage
ex:

MARK		VOLTAGE(V)	PRODUCT SERIES
(3)	(4)		
3	3	3.3	XC62HR330*D*
5	0	5.0	XC62HR500*D*

(5) represents temperature characteristics

MARK	TEMPERATURE CHARACTERISTICS	PRODUCT SERIES
0	TYP $\pm 100 \mathrm{ppm}$	$\mathrm{XC}^{2} 2 \mathrm{HR}^{* *} 0^{* * *}$

[^0]1. The product and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date.
2. The information in this datasheet is intended to illustrate the operation and characteristics of our products. We neither make warranties or representations with respect to the accuracy or completeness of the information contained in this datasheet nor grant any license to any intellectual property rights of ours or any third party concerning with the information in this datasheet.
3. Applicable export control laws and regulations should be complied and the procedures required by such laws and regulations should also be followed, when the product or any information contained in this datasheet is exported.
4. The product is neither intended nor warranted for use in equipment of systems which require extremely high levels of quality and/or reliability and/or a malfunction or failure which may cause loss of human life, bodily injury, serious property damage including but not limited to devices or equipment used in 1) nuclear facilities, 2) aerospace industry, 3) medical facilities, 4) automobile industry and other transportation industry and 5) safety devices and safety equipment to control combustions and explosions. Do not use the product for the above use unless agreed by us in writing in advance.
5. Although we make continuous efforts to improve the quality and reliability of our products; nevertheless Semiconductors are likely to fail with a certain probability. So in order to prevent personal injury and/or property damage resulting from such failure, customers are required to incorporate adequate safety measures in their designs, such as system fail safes, redundancy and fire prevention features.
6. Our products are not designed to be Radiation-resistant.
7. Please use the product listed in this datasheet within the specified ranges.
8. We assume no responsibility for damage or loss due to abnormal use.
9. All rights reserved. No part of this datasheet may be copied or reproduced unless agreed by Torex Semiconductor Ltd in writing in advance.

[^0]: (6) represents production lot number

 0 to 9, A to Z repeated (G, I, J, O, Q, W excluded)
 Note: No character inversion used.

