XC6365/XC6366 Series

ETR0501 006

PWM Controlled, PWM/PFM Switchable Step-Down DC/DC Controllers

☆GreenOperation Compatible

■GENERAL DESCRIPTION

The XC6365/XC6366 series are multi-functional step-down DC/DC controllers which have 1A output current capability by using an externally connected transistor, coil, diode and capacitor.

Output voltage is programmable in 0.1V increments between 1.5V to 6.0V (VOUT) (±2.5% accuracy). Further, with 1.0V of standard voltage supply internal and using externally connected components, output voltage can be set up freely (FB). With a 300kHz switching frequency, the size of the external components can be reduced.

Control switches from PWM to PFM during light loads with the XC6366 (PWM/PFM switchable) and the series is highly efficient from light loads to large output currents.

Soft start time of XC6365/ XC6366A, B series is internally set to 10ms and XC6365/66C, D series regulate soft-start time by connecting resistors and capacitors externally.

During stand-by time (CE pin "Low"), current consumption is reduced to less than $0.5 \,\mu$ A.

With UVLO internal, the external transistor will be forcibly switched off if used below the stipulated voltage.

■APPLICATIONS

- E-book Reader / Electronic dictionaries
- Smart phones / Mobile phones
- Note PCs / Tablet PCs
- Digital audio equipments
- Multi-function power supplies

■FEATURES

Input Voltage Range : 2.2V ~ 10V (Vout type)

Output Voltage Range : 1.5V ~ 6.0V (0.1V increments) (±2.5%)

Oscillation Frequency: 300kHz (±15%)

Custom products for 180, 500kHz

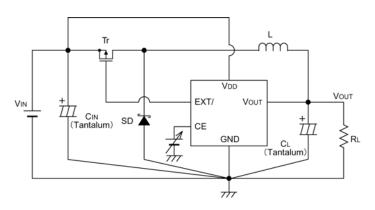
Output Current : More than 1.0A (VIN=5.0V, VOUT=3.0V)

High Efficiency : 92% (TYP.)

Stand-by Capability : I_{STB} =0.5 μ A (MAX.)

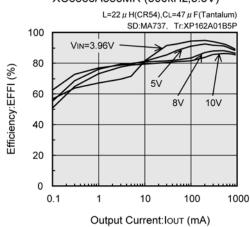
Selection : Soft-start set-up external

Output voltage set-up internal (Vout)
Output voltage set-up external (FB)

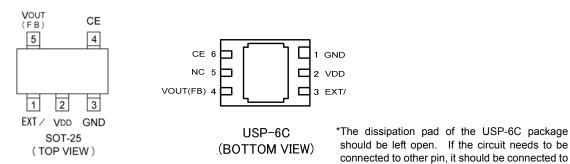

PWM/PFM Control (XC6366)

Maximum Duty Cycle: 100%

Packages : SOT-25, USP-6C


Environmentally Friendly: EU RoHS Compliant, Pb Free

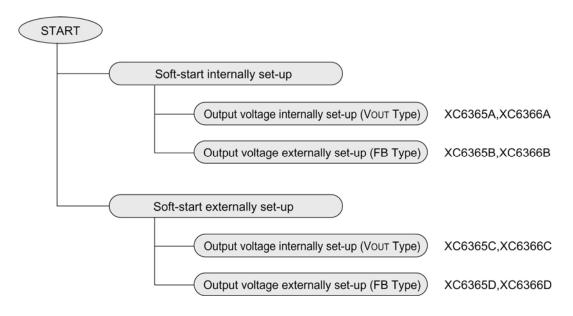
■TYPICAL APPLICATION CIRCUIT



■TYPICAL PERFORMANCE CHARACTERISTICS

XC6366A333MR (300kHz,3.3V)

■PIN CONFIGURATION


■ PIN ASSIGNMENT

PIN NL	JMBER	PIN NAME	FUNCTION
SOT-25	USP-6	FIN INAIVIE	FUNCTION
1	3	EXT/	External Transistor Connection
2	2	Vdd	Power Supply
3	1	GND	Ground
4	6	CE	Chip Enable Soft-Start Capacitor Connection
4	b	G	with Soft-Start Externally Set-Up Types (C, D)
5	4	Vout (FB)	Output Voltage Monitor FB with Externally
3	+	VOUI (FB)	Set-Up Types (B, D)
-	5	NC	No Connection

the VDD (No.2) pin.

■PRODUCT CLASSIFICATION

Selection Guide

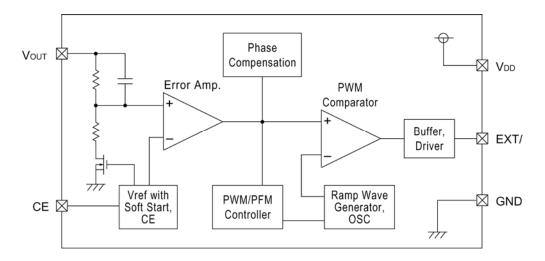
■ PRODUCT CLASSIFICATION (Continued)

Ordering Information

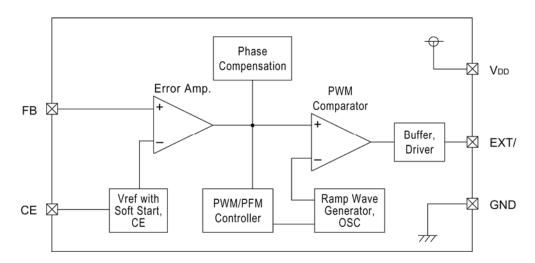
XC6365123456-7(*1) PWM control

XC6366123456-7 (*1) PWM/PFM switching control

DESIGNATOR	ITEM	SYMBOL	DESCRIPTION
			Vou⊤ type: Internally set-up, soft-start internally set-up
1	Type of DC/DC Convertor	В	FB type: Externally set-up, soft-start internally set-up
U	Type of DC/DC Converter	С	Vou⊤ type: Internally set-up, soft-start externally set-up
		D	FB type: Externally set-up, soft-start internally set-up
23	Output Voltage	15~60	Vou⊤ type: 3.0V output → ②=3, ③=0
23	Output Voltage	10	FB type: 10 fixed → ②=1, ③=0 fixed
		3	300kHz
4	Oscillation Frequency	5	500kHz (custom)
		2	180kHz (custom)
		MR	SOT-25 (3,000/Reel)
56-7	Packages	MR-G	SOT-25 (3,000/Reel)
30-0	(Order Unit)	ER	USP-6C (3,000/Reel)
		ER-G	USP-6C (3,000/Reel)


^(*1)

compliant.


The "-G" suffix indicates that the products are Halogen and Antimony free as well as being fully EU RoHS

■BLOCK DIAGRAMS

XC6365, XC6366 Series A, C type (Vout)

XC6365, XC6366 Series B, D type (FB)

■ ABSOLUTE MAXIMUM RATINGS

Ta = 25°C

PARAMETER		SYMBOL	RATINGS	UNITS
VIN Pin Vo	ltage	Vdd	-0.3 ~ +12	V
Vout Pin V	oltage	Vout	-0.3 ~ VIN +0.3	V
FB Pin Vo	Itage	VFB	-0.3 ~ VIN +0.3	V
CE Pin Voltage		VCE	-0.3 ~ VIN +0.3	V
EXT/ Pin Voltage		VEXT/	-0.3 ~ VIN +0.3	V
EXT/ Pin C	urrent	IEXT/	±100	mA
Power Dissipation	SOT-25		150	mW
Power Dissipation	USP-6C	Pd	100	IIIVV
Operating Temperature Range		Topr	-30 ~ +80	°C
Storage Tempera	ature Range	Tstg	-40 ~ +125	°C

Note: Voltage is all ground standardized.

■ELECTRICAL CHARACTERISTICS

XC6365A333MR, XC6366A333MR

(Vout=3.3V.	$f_{OSC}=300kHz$)	Ta=25°C
1 V OO 1 - J.J V.	INSC-SOURI IZ I	10-20 0

,		(0001-3.30, 1	OSC-JOOKI	1 <i>2)</i>	10	a-25 C
PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Output Voltage	Vout		3.218	3.300	3.383	V
Maximum Input Voltage	Vin		10.0	-	-	V
UVLO Voltage (Minimum Operating Voltage)	Vuvlo	Same as IDD1, Voltage which EXT/pin voltage holding "H" level		-	2.2	V
Supply Current 1	IDD1	No external components, CE=VDD, VOUT=0V	-	57	102	μΑ
Supply Current 2	IDD2	No external components, XC6365	-	57	102	μΑ
Supply Suitent 2	IDD2	CE=Vout=Vdd XC6366	-	15	27	μΑ
Stand-by Current	ISTB	No external components, CE=Vout=0V	-	-	0.5	μΑ
Oscillation Frequency	fosc	Measuring of EXT/ waveform, Vเง=output voltage + 0.1V	255	300	345	kHz
Maximum Duty Ratio	MAXDTY		100	-	-	%
PFM Duty Ratio	PFMDTY	No load (XC6366 only)	15	25	35	%
CE "High" Voltage	VCEH	No external components, VouT=0V, Voltage which EXT/pin voltage holding "L" leve	0.65	-	-	٧
CE "Low" Voltage	VCEL	No external components, VouT=0V, Voltage which EXT/pin voltage holding "H" level		-	0.20	V
EXT "High" ON Resistance	REXTBH	Same as IDD2, VEXT/=VDD-0.4V		16	22	μΑ
EXT "Low" ON Resistance	REXTBL	Same as IDD1, VEXT/=0.4V	-	14	19	μΑ
Efficiency	EFFI	Use of a XP162A12A6 transistor recommended		92	-	%
Soft-Start Time	tss	Connect Rss, Css, CE, 0V→ 3.0V (When Vin≤3.0V, Vin=3.0V)		10	20	ms

Conditions: 1. Unless otherwise stated, connect external components. VIN=VDD = 5.0V, IOUT = 220mA

2. XC6365/66C series external components: Css=0.033 μ F, Rss=470k Ω

■ELECTRICAL CHARACTERISTICS (Continued)

XC6365A503MR, XC6366A503MR

(Vout=5.0V, f_{OSC} =300kHz)

Ta=25°C

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Output Voltage	Vout		4.875	5.000	5.125	V
Maximum Input Voltage	Vin		10.0	-	-	V
UVLO Voltage	Vuvlo	Same as IDD1,	0.9	-	2.2	V
(Minimum Operating Voltage)		Voltage which EXT/pin voltage holding "H" level		_		
Supply Current 1	IDD1	No external components, CE=VDD, VOUT=0V	-	67	122	μΑ
Supply Current 2	IDD2	No external components, XC6365	-	67	122	μΑ
Supply Suitcht 2	IDD2	CE=Vout=Vdd XC6366	-	16	29	μΑ
Stand-by Current	ISTB	No external components, CE=Vout=0V	-	-	0.5	μΑ
On that is a Factor of		Measuring of EXT/ waveform,	055	000	0.45	
Oscillation Frequency	fosc	Vin=output voltage + 0.1V	255	300	345	kHz
Maximum Duty Ratio	MAXDTY		100	-	-	%
PFM Duty Ratio	PFMDTY	No load (XC6366 only)	15	25	35	%
CE "High" Voltage	VCEH	No external components, Vout=0V,	0.65			V
CE Tiigit Voltage	VCER	Voltage which EXT/pin voltage holding "L" level	0.05	-	-	V
CE "Low" \/oltogo	VCEL	No external components, Vout=0V,			0.20	V
CE "Low" Voltage	VCEL	Voltage which EXT/pin voltage holding "H" level	-	_	0.20	V
EXT "High" ON Resistance	Rехтвн	Same as IDD2, VEXT/=VIN-0.4V		12	17	μΑ
EXT "Low" ON Resistance	REXTBL	Same as IDD1, VEXT/=0.4V	-	10	14	μΑ
T#ining and	CCCI	Use of a XP162A12A6		00		0/
Efficiency	EFFI	transistor recommended	-	93	-	%
Coff Start Time	too	Connect Rss, Css, CE, 0V→ 3.0V	E	10	20	ma
Soft-Start Time	tss	(When Vın≦3.0V, Vın=3.0V)	5	10	20	ms

Conditions: 1. Unless otherwise stated, connect external components. VIN=VDD = 7.5V, IOUT = 330mA

2. XC6365/66C series external components: Css=0.033 μ F, Rss=470k Ω

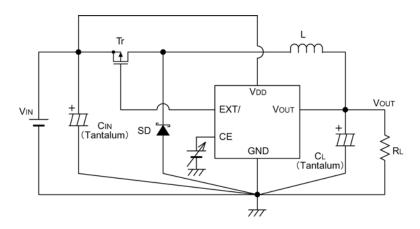
■ ELECTRICAL CHARACTERISTICS (Continued)

XC6365B103MR, XC6366B103MR

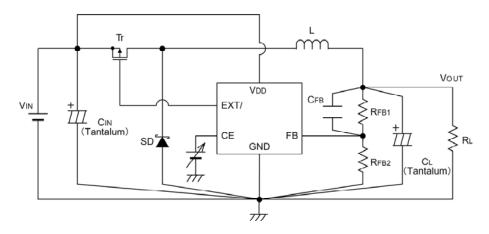
(Vout=3.0V, f_{OSC} =300kHz)

Ta=25°C

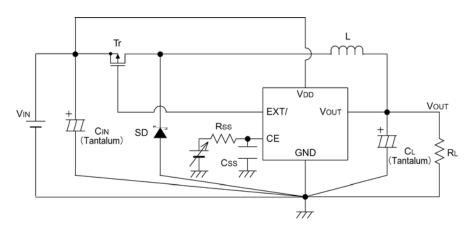
PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Output Voltage	Vout		2.925	3.000	3.075	V
Maximum Input Voltage	Vin		10.0	-	-	V
UVLO Voltage	Vuvlo	Same as IDD1,	0.9		2.2	V
(Minimum Operating Voltage)	VUVLO	Voltage which EXT/pin voltage holding "H" leve	0.9	_	2.2	V
Supply Current 1	IDD1	No external components, CE=VIN, VOUT=0V	-	55	100	μΑ
Supply Current 2	IDD2	No external components, XC6365	-	55	100	μΑ
Supply Current 2	IDD2	CE=VDD, FB=1.2V XC6366	-	15	27	μΑ
Stand-by Current	ISTB	No external components, CE=FB=0V	-	-	0.5	μΑ
Ossillation Frances		Measuring of EXT/ waveform,	255	200	245	kHz
Oscillation Frequency	fosc	Vเท=output voltage + 0.1V		300	345	KI IZ
Maximum Duty Ratio	MAXDTY		100	-	-	%
PFM Duty Ratio	PFMDTY	No load (XC6366 only)	15	25	35	%
CE "High" \/oltogo	VCEH	No external components, FB=0V,	0.65			V
CE "High" Voltage	VCEH	Voltage which EXT/pin voltage holding "L" level	0.65	_	-	V
CE "Low" Voltage	Mori	No external components, Vout=0V,			0.20	\/
CE "Low" Voltage	VCEL	Voltage which EXT/pin voltage holding "H" level		-	0.20	V
EXT "High" ON Resistance	Rехтвн	Same as IDD2, VEXT/=VIN-0.4V		17	24	μΑ
EXT "Low" ON Resistance	REXTBL	Same as IDD1, VEXT/=0.4V		15	20	μΑ
Efficiency	EFFI	Use of a XP162A12A6		92		%
Efficiency		transistor recommended		92	-	70
Soft-Start Time	tss	Connect Rss, Css, CE, 0V→ 3.0V	5	10	20	me
Soit-Start Tille	100	(When Vin≦3.0V, Vin=3.0V)	3	10	20	ms


Conditions: 1. Unless otherwise stated, connect external components. VIN=VDD = 4.5V, IOUT = 200mA

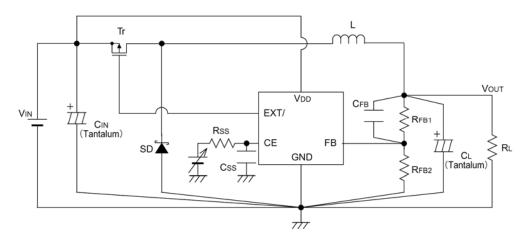
^{2.} XC6365/66C series external components: Css=0.033 μ F, Rss=470k Ω


^{3.} RFB1 = $400k\Omega$, RFB2 = $200k\Omega$, CFB = 100ppF

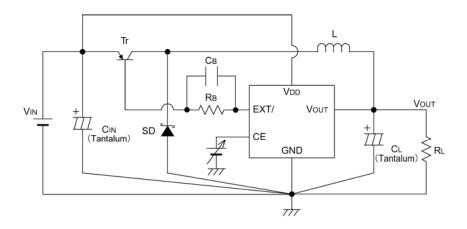
TEST CIRCUITS


Circuit 1. XC6365A, XC6366A

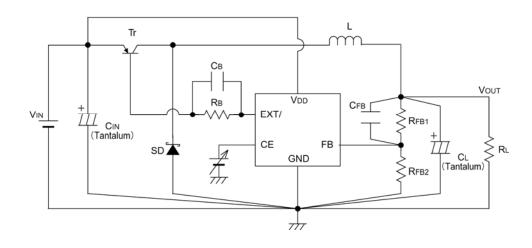
Circuit 2. XC6365B, XC6366B



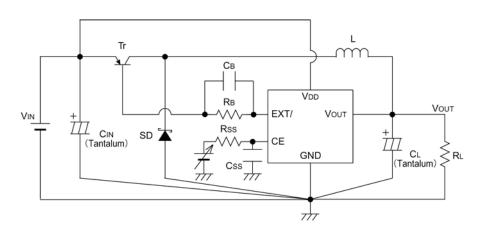
Circuit 3. XC6365C, XC6366C



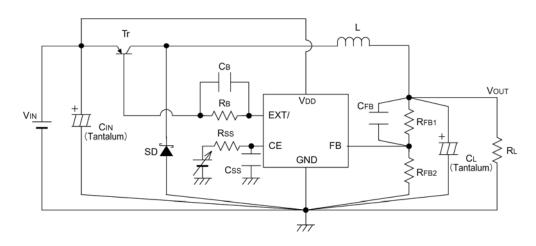
■TEST CIRCUITS (Continued)


Circuit 4. XC6365D, XC6366D

Circuit 5. XC6365A, XC6366A (when used with a PNP transistor)



Circuit 6. XC6365B, XC6366B (when used with a PNP transistor)



■TEST CIRCUITS (Continued)

Circuit 7. XC6365C, XC6366C (when used with a PNP transistor)

Circuit 8. XC6365D, XC6366D (when used with a PNP transistor)

Recommended Components

: XP162A12A6PR (Torex P-channel Power MOSFET) Please use a PNP transistor where Vin < 2.5V

: 22 μ H (CR54, SUMIDA, f_{OSC}=300kHz) 47μ H (CR75, SUMIDA, f_{OSC} =180kHz) 10μ H (CR54, SUMIDA, f_{OSC} =500kHz)

SD: MA2Q735 (Schottky Diode, MATSUSHITA)

CL :10V, 47 μ F (Tantalum capacitor, NICHICHEMI MCE) CIN :16V 10 μ F (Tantalum capacitor, NICHICHEMI MCE)

PNP Tr. Type

Tr : 2SA1213 (TOSHIBA)

RB : 500Ω (Adjust according to load and Tr. hFE levels)

CB: 2200pF (Ceramic Type)

Set up so that $CB \le 1 / (2 \pi \times RB \times f_{OSC} \times 0.7)$

C, D type (soft-start externally set-up)

Css : 0.033 µ F (Ceramic Capacitor) Rss : $470k\Omega(C \text{ type})$, $330k\Omega(D \text{ type})$

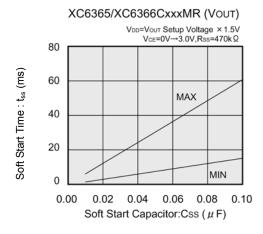
B, D type (FB type)

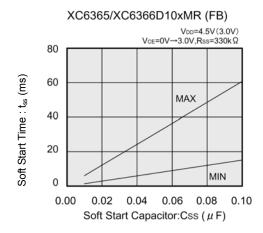
RFB : Set up so that RFB1 / RFB2 = VOUT - 1(Vout = setting output voltage), $RFB1 = RFB2 \le 2M\Omega$

CFB : Set up so that $fzfb = 1 \div (2 \pi \times CFB \times RFB1)$ is within the 0.5 to 20kHz range (10kHz conventional) Adjustments necessary in respect of L, CL.

e.g. : Vout = 3.0V

Rfb1 = $400k\Omega$, Rfb2 = $200k\Omega$, Cfb = 100pF

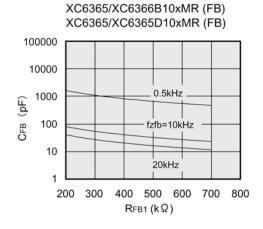

■NOTES ON USE


- 1. Take ample care to ensure that none of the IC's, nor the external component's, absolute maximum ratings are exceeded.
- 2. Be extremely careful when selecting parts and do not limit your reference to the specifications and characteristics for the DC/DC converter alone. The IC also depends, to a great extent, upon the external components.
- 3. Arrange the peripherals in the environs of the IC. In order to reduce wiring impedance, use short, thick wires. In particular, wire the load capacitor as close as possible and strengthen the ground wiring sufficiently.
- 4. Ground current during switching may cause the IC's operations to become unstable due to changes in ground voltage, so please strengthen the IC's GND pin surroundings.

External Components

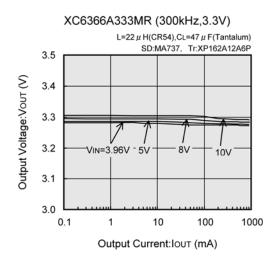
1. Setting soft start time

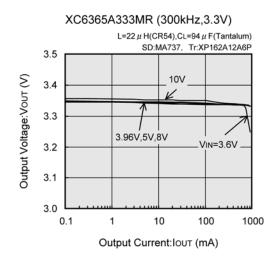
To set a longer soft start time, please use XC6365C or XC6365D series which soft start function is externally set up. For the measurement of soft start time Tss, the time is needed to be between the maximum and the minimum value indicated in the chart below. Please set a soft start capacitor Css according to the application.

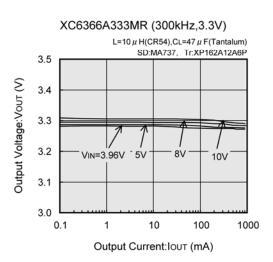


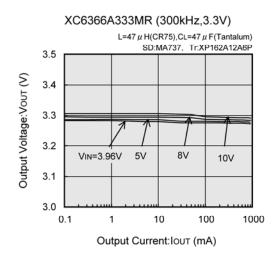
2. Setting RFB1 and CFB

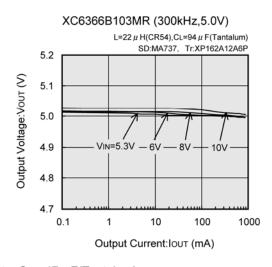
 $fzfb=1 \div (2 \pi \times CFB \times RFB1)$

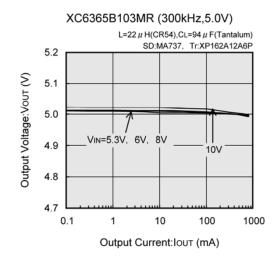

As the combination of RFB1 and CFB enable to set fzfb between 0.5kHz to 20kHz, within the realm of fzfb=0.5kHz to fzfb=20kHz as the chart below can be effective.

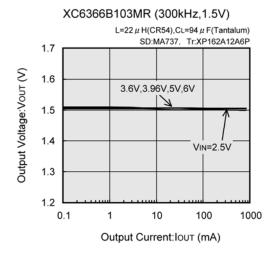

Under normal condition, please set the combination to configure around fzfb=10kHz.

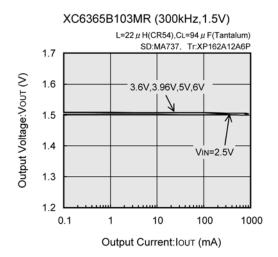


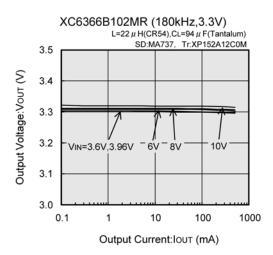

■TYPICAL PERFORMANCE CHARACTERISTICS

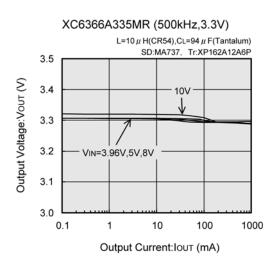

(1) Output Voltage vs. Output Current



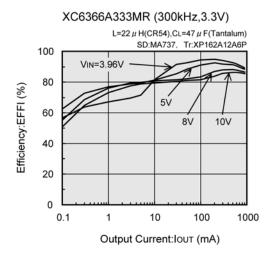


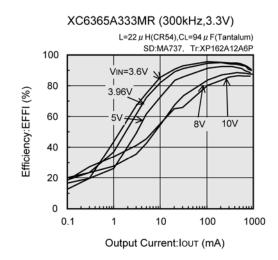


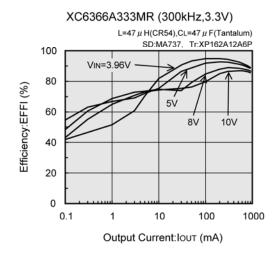


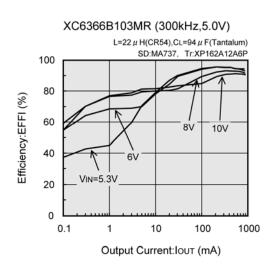

Note: CIN=47 μ F(Tantalum)

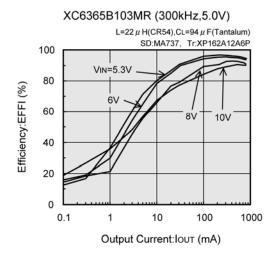
(1) Output Voltage vs. Output Current (Continued)



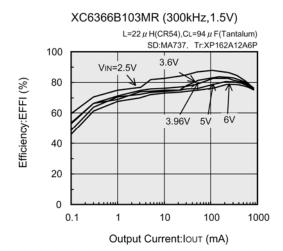


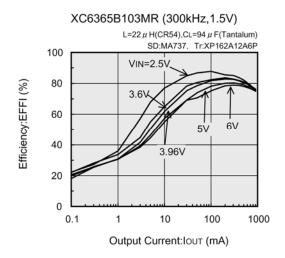

Note: CIN=47 μ F(Tantalum)

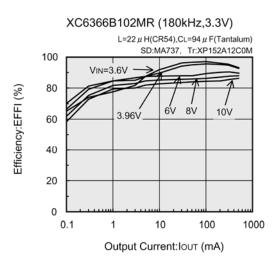

(2) Efficency vs. Output Current

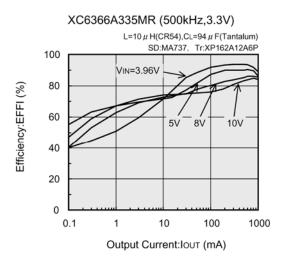


XC6366A333MR (300kHz,3.3V) L=10 μ H(CR54),CL=47 μ F(Tantalum) SD:MA737. Tr:XP162A12A6P 100 VIN=3.96V 80 Efficiency:EFFI (%) 5V 60 8V 10V 40 20 0 0.1 10 100 1000 Output Current:IOUT (mA)

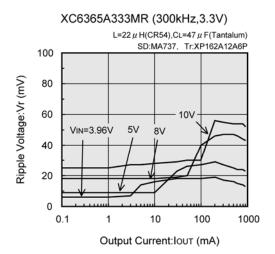


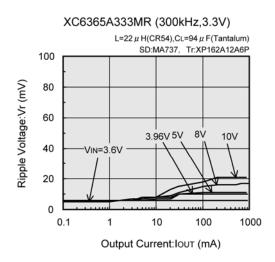


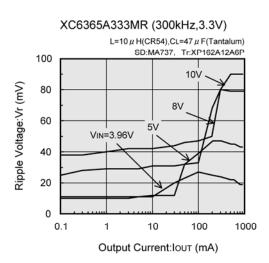


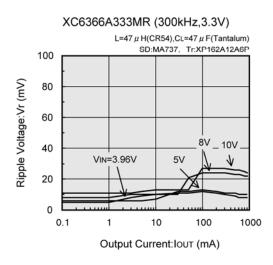

Note: CIN=47 μ F(Tantalum)

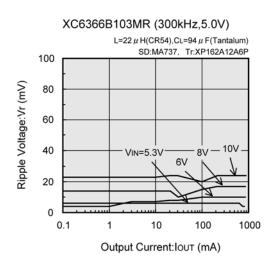
(2) Efficiency vs. Output Current (Continued)

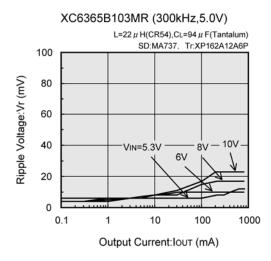


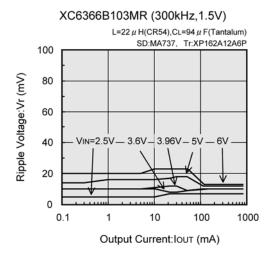


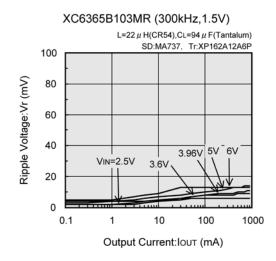


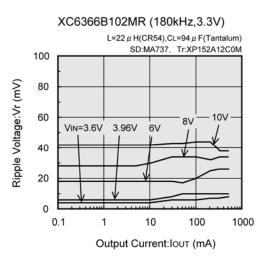

Note: CIN=47 μ F(Tantalum)

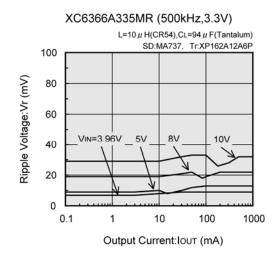

(3) Ripple Voltage vs. Output Current



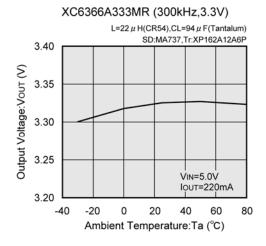


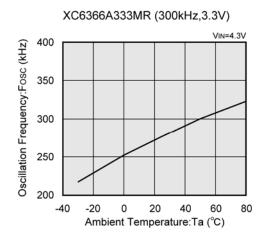




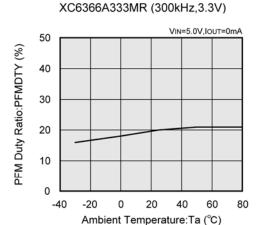

Note: CIN=47 μ F(Tantalum)

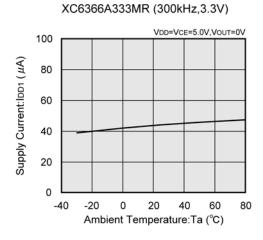
(3) Ripple Voltage vs. Output Current (Continued)

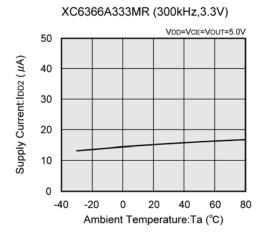


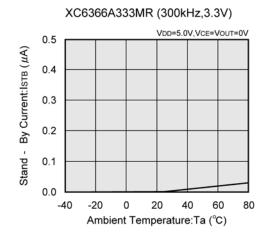


Note: CIN=47 μ F(Tantalum)

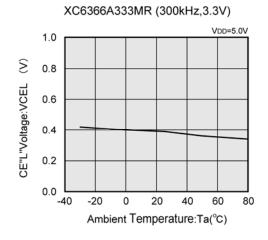

(4) Output Voltage vs. Ambient Temperature

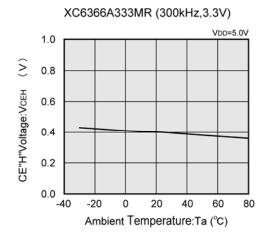

(5) Oscillation Frequency vs. Ambient Temperature


(6) PFM Duty Ratio vs. Ambient Temperature

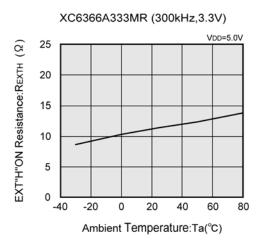

(7) Supply Current 1 vs. Ambient Temperature

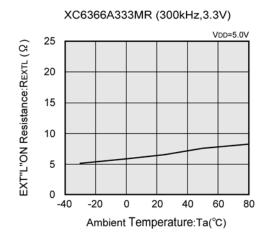
(8) Supply Current 2 vs. Ambient Temperature



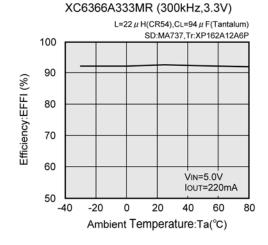

(9) Stand-By Current vs. Ambient Temperature

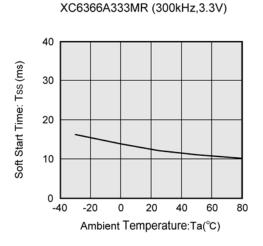
(10) CE "L"Voltage vs. Ambient Temperature

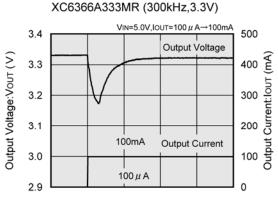

(11) CE"H"Voltage vs. Ambient Temperature



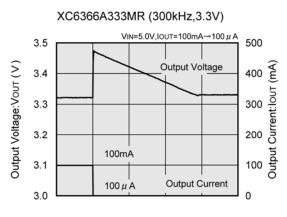
(12) EXT"H"On Resistance vs. Ambient Temperature

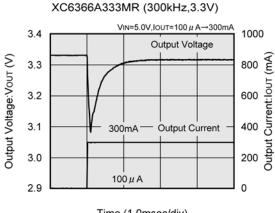

(13) EXT"L"On Resistance vs. Ambient Temperature

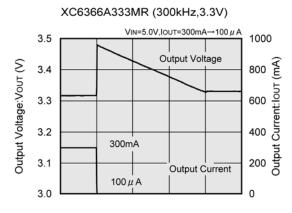


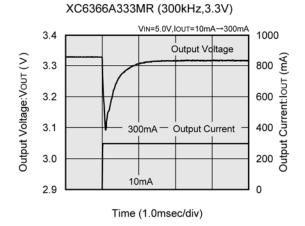

(14) Efficiency vs. Ambient Temperature

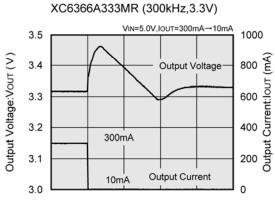
(15) Soft-Start Time vs. Ambient Temperature



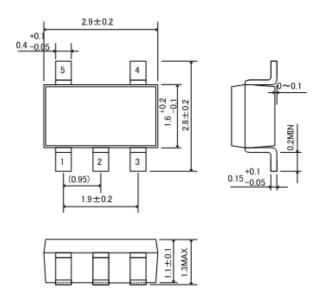

(16) Load Transient Response

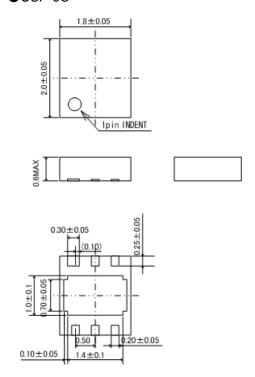

Time (1.0msec/div)


Time (40msec/div)

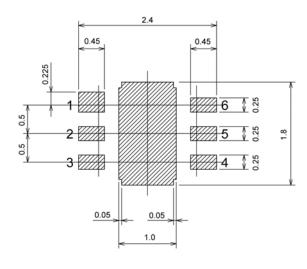


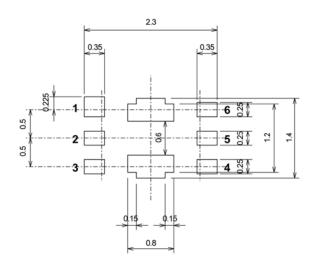
Time (1.0msec/div)

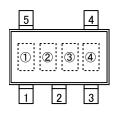

Time (40msec/div)



■PACKAGING INFORMATION


●SOT-25


●USP-6C


●USP-6C Reference Pattern Layout

●USP-6C Reference Metal Mask Design

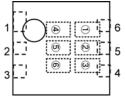
■ MARKING RULE

SOT-25 (TOP VIEW)

① represents product classification

MARK	PRODUCT SERIES	MARK	PRODUCT SERIES
<u>A</u>	XC6365A	<u>K</u>	XC6366A
<u>B</u>	XC6365B	<u>L</u>	XC6366B
<u>C</u>	XC6365C	<u>M</u>	XC6366C
<u>D</u>	XC6365D	<u>N</u>	XC6366D

2 represents integer of output voltage and oscillation frequency


OUTPUT VOLTAGE	OSCILLATION FREQUENCY (kHz)					
OUTFUT VOLIAGE	100	180	300	500		
1.x	<u>B</u>	<u>1</u>	<u>1</u>	<u>B</u>		
2.x	<u>C</u>	<u>2</u>	<u>2</u>	<u>C</u>		
3.x	<u>D</u>	<u>3</u>	<u>3</u>	<u>D</u>		
4.x	<u>E</u>	<u>4</u>	<u>4</u>	<u>E</u>		
5.x	<u>F</u>	<u>5</u>	<u>5</u>	<u>F</u>		
6.x	<u>H</u>	<u>6</u>	<u>6</u>	<u>H</u>		

3 represents decimal number of output voltage and oscillation frequency

OUTPUT VOLTAGE	OSCILLATION FREQUENCY (kHz)						
OUTFUT VOLIAGE	100	180	300	500			
x.0	0	0	Α	Α			
x.1	1	1	В	В			
x.2	2	2	С	С			
x.3	3	3	D	D			
x.4	4	4	E	E			
x.5	5	5	F	F			
x.6	6	6	Н	Н			
x.7	7	7	K	K			
x.8	8	8	L	L			
x.9	9	9	M	M			

represents production lot numberto 9, A to Z repeated (G, I, J, O, Q, W excluded)

■MARKING RULE (Continued)

1 represents product series

MARK	PRODUCT SERIES
2	XC6365****E*
0	XC6366****E*

USP-6C (TOP VIEW)

2 represents product classification

MARK	PRODUCT SERIES
Α	XC6365/66A***E*
В	XC6365/66B***E*
С	XC6365/66C***E*
D	XC6365/66D***E*

34 represents output voltage

e.g.:

MARK		OUTPUT VOLTAGE (V)	PRODUCT SERIES
3	4	OUTPUT VOLIAGE (V)	FRODUCT SERIES
3	3	3.3	XC6365/66*33*E*
5	0	5.0	XC6365/66*50*E*

⑤ represents oscillation frequency

MARK	OCSILLATION FREQUENCY	PRODUCT SERIES
2	180kHz	XC6365/66***2E*
3	300kHz	XC6365/66***3E*
5	500kHz	XC6365/66***5E*

⑥ represents production lot number 0 to 9, A to Z repeated (G, I, J, O, Q, W excluded)

- 1. The products and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date.
- 2. We assume no responsibility for any infringement of patents, patent rights, or other rights arising from the use of any information and circuitry in this datasheet.
- 3. Please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this datasheet.
- 4. The products in this datasheet are not developed, designed, or approved for use with such equipment whose failure of malfunction can be reasonably expected to directly endanger the life of, or cause significant injury to, the user.
 - (e.g. Atomic energy; aerospace; transport; combustion and associated safety equipment thereof.)
- Please use the products listed in this datasheet within the specified ranges.
 Should you wish to use the products under conditions exceeding the specifications, please consult us or our representatives.
- 6. We assume no responsibility for damage or loss due to abnormal use.
- All rights reserved. No part of this datasheet may be copied or reproduced without the prior permission of TOREX SEMICONDUCTOR LTD.

TOREX SEMICONDUCTOR LTD.