

ETR2426_003b

2 Channel Voltage Detector (Sense Pin separated from V_{DD})

■GENERAL DESCRIPTION

The XCM410 series is a multi combination module IC which comprises of two voltage detectors, XC6108 and XC6109 series. The two detectors inside are highly precise, low power consumption voltage detectors using laser trimming technology. The sense pin (V_{SEN}) for channel 1 (V_{OUT1}) is separated from power supply (V_{IN}) so that it allows this pin to monitor added power supply. This feature enables output to maintain the state of detection even when voltage of the monitored power supply drops to 0V. The output configuration is N-channel open-drain.

APPLICATIONS

- Microprocessor reset circuitry
- Charge voltage monitors
- Memory battery back-up switch circuits
- Power failure detection circuits

■FEATURES

High Accuracy : ±2%(Detect Voltage ≥ 1.5V)

: ±30mV(Detect Voltage<1.5V)

 ${\color{red}\textbf{Low Power Consumption}} \hspace{0.5cm} : \hspace{0.1cm} \textbf{1.7} \hspace{0.1cm} \mu \hspace{0.1cm} \textbf{A} \hspace{0.1cm} (\text{TYP}) \\$

 $(V_{OUT1}=1.5V, V_{OUT2}=3.3V, V_{IN}=4.0V)$

0.8V~5.0V (0.1V increments)

: Channel2 (Sensing pin: VIN, Output pin: VOUT2)

1.1V~5.0V (0.1V increments)

Operating Voltage Range : 1.0V~6.0V

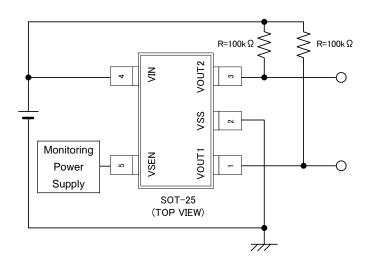
Detect Voltage Temperature Characteristics

: ±100ppm/°C(TYP.)

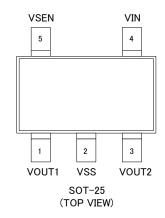
Output Configuration : N-channel open drain

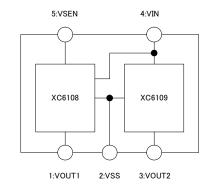
Operating Temperature Range

: -40°C~85°C


Built-In 2 Detect Voltage Circuit

 $\textbf{Separated Sense Pin} \hspace{1.5cm} : \hspace{.1cm} \textbf{Channel1} (Sensing pin: V_{SEN}, \hspace{.1cm} \textbf{Output pin: V}_{OUT1})$


Package : SOT-25


 $\textbf{Environmentally Friendly} \qquad : \ \mathsf{EU \ RoHS \ Compliant}, \ \mathsf{Pb \ Free}$

■TYPICAL APPLICATION CIRCUIT

■PIN CONFIGURATION

■ PIN ASSIGNMENT

PIN	XCM410	FUNCTION	XC6108	XC6109
1	V _{OUT1}	Output 1	V _{OUT}	-
2	V _{SS}	Ground	V _{SS}	V_{SS}
3	V _{OUT2}	Output 2	-	V_{OUT}
4	Vin	Input Voltage	V _{IN}	V_{IN}
5	V _{SEN}	Sense	V _{SEN}	-

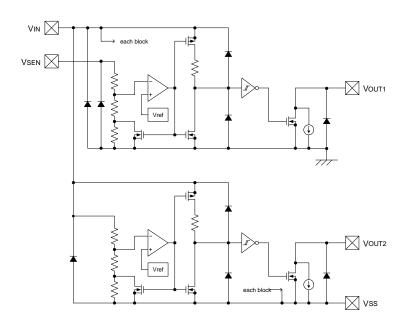
■PRODUCT CLASSIFICATION

Ordering Information

XCM410123456-7(*1)

DESIGNATOR	DESCRIPTION	SYMBOL	DESCRIPTION	
12	Output Configuration	AA	Vout1/Vout2: N-ch open drain output	
34	Detect Voltage	01~	Sequential numbers for two voltage detect combinations V _{DF1} Detect Voltage Range : 0.8V ~ 5.0V (0.1V increments) V _{DF2} Detect Voltage Range : 1.1V ~ 5.0V (0.1V increments)	
\$6-7	Packages	MR	SOT-25	
	Taping Type (*2)	MR-G	SOT-25	

^(*1) The "-G" suffix indicates that the products are Halogen and Antimony free as well as being fully RoHS compliant.


DESIGNATOR 34 Detect Voltage

	V_{DF1}	V_{DF2}	
01	1.5	3.3	

^{*}This series are semi-custom products. For other combinations, output voltages and etc., please ask Torex sales contacts.

The device orientation is fixed in its embossed tape pocket. For reverse orientation, please contact your local Torex sales office or representative. (Standard orientation: ⑤R-⑦, Reverse orientation: ⑤L-⑦)

■BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

PARAMETER		SYMBOL	RATINGS	UNITS	
Input Voltage		VIN	Vss-0.3~7.0	V	
Output Voltage	Nch Open Drain	V _{OUT1}	Vss-0.3~7.0	V	
	Nch Open Drain	V _{OUT2}	Vss-0.3~7.0		
Sense Pin Voltage		V _{SEN}	Vss-0.3~7.0	V	
Output Current		lout1	10	mA	
		Іоит2	10	mA	
Power Dissipation	SOT-25	Pd	250	mW	
Operating Temperature Range		Та	-40~+85	°C	
Storage Temperature Range		Tstg	-55 ~ +125	°C	

■ELECTRICAL CHARACTERISTICS

●XCM410AA Series

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Operating Voltage (*1)	V _{IN}		1		6	V	-
Detect Voltage 1 (*2) V _{DF1}				E-1		V	1
Detect Voltage 2 (*2) V _{DF2}				E-1		V	2
Hysteresis Width 1	V _{HYS1}	V _{IN} =1.0∼6.0V	V _{DF1} X0.02	V _{DF1} X0.05	V _{DF1} X0.08	V	1
Hysteresis Width 2	V _{HYS2}	V _{DF2(T)} =1.1~5.0V (*3)	V _{DF2} X0.02	V _{DF2} X0.05	V _{DF2} X0.08	V	2
Supply Current 1 (*4)	I _{SS1}	$V_{IN}=V_{DF2}\times0.9$ $V_{SEN}=V_{DF1}\times0.9$ $V_{DF2(T)}=1.1V\sim1.9V$ $V_{DF2(T)}=2.0V\sim3.9V$ $V_{DF2(T)}=4.0V\sim5.0V$		1.4 1.5 1.6	3.3 3.5 3.6	μΑ	3
Supply Current 2 (*4)	I _{SS2}	$V_{IN}=V_{DF2}\times 1.1$ $V_{SEN}=V_{DF1}\times 1.1$ $V_{DF2(T)}=1.1V\sim 1.9V$ $V_{DF2(T)}=2.0V\sim 3.9V$ $V_{DF2(T)}=4.0V\sim 5.0V$		1.8 2.0 3.1	3.6 3.8 4.0	μΑ	3
Output Current 1	I _{OUT1}	$\begin{split} V_{\text{SEN}} &= 0 \text{V } V_{\text{DS}} = 0.5 \text{V(N-ch)} \\ V_{\text{IN}} &= 1.0 \text{V} \\ V_{\text{IN}} &= 2.0 \text{V} \\ V_{\text{IN}} &= 3.0 \text{V} \\ V_{\text{IN}} &= 4.0 \text{V} \\ V_{\text{IN}} &= 5.0 \text{V} \\ V_{\text{IN}} &= 6.0 \text{V} \end{split}$	0.1 0.8 1.2 1.6 1.8	0.7 1.6 2.0 2.3 2.4 2.5		mA	4
Output Current 2	I _{OUT2}	V_{DS} =0.5 V (N-ch) V_{IN} =1.0 V (*5) V_{IN} =2.0 V (*6) V_{IN} =3.0 V (*7) V_{IN} =4.0 V (*8)	0.1 0.8 1.2 1.6	0.7 1.6 2.0 2.3		mA	\$
N-ch Driver Leakage Current 1	I _{LEAK1}	V_{IN} =6.0V, V_{SEN} =6.0V, V_{OUT} =6.0V		0.2	0.4	μΑ	4
N-ch Driver Leakage Current 2	I _{LEAK2}	V_{IN} =6.0V V_{OUT} =6.0V		0.2	0.4	μΑ	4
Temperature Characteristics (*1)	ΔV _{DF} / ΔTa · V _{DF}	-40 °C≦Ta≦85 °C		±100		ppm/°C	1
Sense Resistance (*9)				E-2		МΩ	6
Detect Delay 1 (*10)	t _{DF1}	V _{IN} =6.0V		30	230	μs	7
Detect Delay 2 (*11)	t _{DF2}	V _{IN} =6.0V→1.0V		30	230	μs	8
Release Delay 1 (*12)	t _{DR1}	V _{IN} =6.0V		30	200	μs	7
Release Delay 2 (*13)	t _{DR2}	V _{IN} =1.0V→6.0V		30	200	μs	8

NOTE:

- *1: $V_{OUT1} \cdot V_{OUT2}$: same characteristics.
- *2: The detect voltage range for V_{DF1} (V_{OUT1}): 0.8V ~ 5.0V. The detect voltage range for V_{DF2} (V_{OUT2}): 1.1V ~ 5.0V.
- *3: The detect voltage for V_{DF2(T)} (V_{OUT2)}.

 *4: Current flowing to the sense resistor is not included.
- *5: V_{DF2(T)}>1.0V
- *6: V_{DF2(T)}>2.0V
- *7: V_{DF2(T)}>3.0V
- *8: V_{DF2(T)}>4.0V
- *9: Calculated from current value and voltage values at the both ends of the resistor.
- *10: Time until $V_{\text{SEN}} = V_{\text{DF1}}$ reaches $V_{\text{OUT1}} = V_{\text{IN}} \times 0.1$ when V_{SEN} falls. *11: Time until $V_{\text{IN}} = VDF2$ reaches $V_{\text{OUT2}} = 0.6 \text{V}$ when V_{IN} falls.
- *12: Time until $V_{\text{SEN}} = V_{\text{DF1}} + V_{\text{HYS1}}$ reaches $V_{\text{OUT1}} = V_{\text{IN}}$ when V_{SEN} rises.
- *13: Time until $V_{IN}=V_{DF2}+V_{HYS2}$ reaches $V_{OUT2}=5.4V$ when V_{IN} rises.

■VOLTAGE CHART

	E-1		E-2		
PARAMETER	DETECT VOLTAGE (*1)		SENSE RESISTANCE		
NOMINAL	(V)		$(M\Omega)$		
DETECT VOLTAGE					
V _{DF1(T)} ,V _{DF2(T)}	V _{DF1} ,V _{DF2}		R _{SEN}		
(V)	MIN.	MAX.	MIN.	TYP.	
0.8	0.770	0.830			
0.9	0.870	0.930		20	
1.0	0.970	1.030			
1.1	1.070	1.130			
1.2	1.170	1.230			
1.3	1.270	1.330	10		
1.4	1.370	1.430			
1.5	1.470	1.530			
1.6	1.568	1.632			
1.7	1.666	1.734			
1.8	1.764	1.836			
1.9	1.862	1.938			
2.0	1.960	2.040			
2.1	2.058	2.142			
2.2	2.156	2.244			
2.3	2.254	2.346		24	
2.4	2.352	2.448			
2.5	2.450	2.550			
2.6	2.548	2.652			
2.7	2.646	2.754			
2.8	2.744	2.856			
2.9	2.842	2.958	13		
3.0	2.940	3.060			
3.1	3.038	3.162			
3.2	3.136	3.264			
3.3	3.234	3.366			
3.4	3.332	3.468	-		
3.5	3.430	3.570	-		
3.6	3.528	3.672	-		
3.7	3.626	3.774			
3.8	3.724	3.876			
3.9	3.822 3.920	3.978 4.080			
4.0					
4.1	4.018	4.182			
4.2	4.116	4.284			
4.3	4.214	4.386			
	4.312	4.488	15	20	
4.5	4.410	4.590	15	28	
4.6	4.508	4.692	-		
4.7	4.606	4.794	-		
4.8	4.704	4.896			
4.9	4.802	4.998			
5.0	4.900	5.100			

^(*1) When $V_{DF1(T)}, V_{DF2(T)} \leqq 1.4V$, detect accuracy is ± 30 mV. When $V_{DF1(T)}, V_{DF2(T)} \geqq 1.5V$, detect accuracy is $\pm 2\%$.

■OPERATIONAL EXPLANATION

Figure 1 is typical application circuit, and Fifure 2 is timing chart of figure 1.

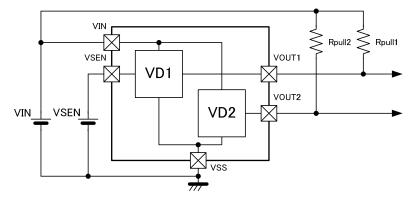


Figure 1: Typical application circuit example

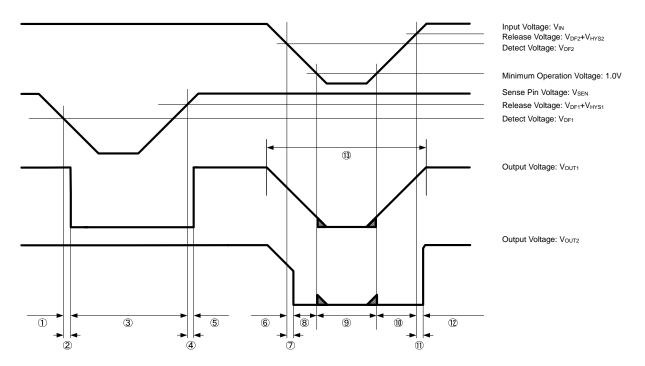


Figure 2: The timing chart of Figure 1

- ① As an early state, the V_{IN} power supply pin and the V_{SEN} sense pin are applied sufficiently high voltage (6.0V MAX.). While the sense pin voltage VSEN starts dropping to the detect voltage VDF1 (VSEN>VDF1), the output voltage VOUT1 keeps high level (=VIN).
 - * If a pull-up resistor of the N-ch open drain is connected to added power supply different from the input voltage pin, the high level will be a voltage value where the pull-up resistor is connected.
- ② When the sense pin voltage keeps dropping and becomes equal to the detect voltage (VSEN =VDF1), the output voltage changes into the low level (≦V_{IN} × 0.1). The detect delay time tDF1 is defined as time which ranges from VSEN=VDF1 to the VOUT1 goes in low level.
- The output voltage (V_{OUT1}) maintains low level while the sense pin voltage increases again to reach the release voltage (VSEN
 VDF1 +VHYS1).
- 4 The release delay time tDR1 is defined as time which ranges from sense pin voltage reaches release voltage ($V_{SEN} \ge V_{DF1} + V_{HYS1}$) to the V_{OUT1} goes in high level.

■ OPERATIONAL EXPLANATION (Continued)

- (S) The output voltage V_{OUT1} maintains high level (=V_{IN}) while the sense pin voltage more than detect voltage (V_{SEN}>V_{DF1}).
- ⑥ The V_{IN} input voltage pin is applied sufficiently high voltage to the release voltage ($V_{DF2}+V_{HYS2}$). While the input pin voltage V_{IN} starts dropping to the detect voltage V_{DF2} ($V_{IN} > V_{DF2}$), the output voltage V_{OUT2} keeps high level (= V_{IN}).
 - * If a pull-up resistor of the N-ch open drain is connected to added power supply different from the input voltage pin, the high level will be a voltage value where the pull-up resistor is connected.
- When the input pin voltage keeps dropping and becomes equal to the detect voltage ($V_{IN} = V_{DF2}$), the output voltage changes into low level (≤ $V_{IN} \times 0.1$). The detect delay time t_{DF2} is defined as time which ranges from $V_{IN} = V_{DF}$ to the V_{OUT} goes in low level.
- While the input pin voltage keeps below the detect voltage V_{DF2}, and 1.0V or more, the output voltage V_{OUT2} maintains low level.
- While the input pin voltage drops to 1.0V or less and it increases again to 1.0V or more, the output voltage (V_{OUT2}) may not be able to maintain low level. Such an operation is called "Undefined Operation", and the output voltage from the V_{OUT2} pin is called undefined operating voltage V_{UNS}.
- While the input pin voltage increases from 1.0V to the release voltage level (V_{IN}<V_{DF2} +V_{HYS2}), the output voltage (V_{OUT2}) maintains low level.
- The release delay time tDR2 is defined as time which ranges from the V_{IN} power supply voltage pin reaches release voltage $(V_{IN} \ge V_{DF2} + V_{HYS2})$ to the V_{OUT2} goes in high level.
- 1 The output voltage V_{OUT2} maintains high level (= V_{IN}) while the power supply voltage more than detect voltage (V_{IN} > V_{DF2}).
- (3) If a pull-up resistor Rpull1 of the N-ch open drain is connected to power supply V_{IN}, output voltage V_{OUT1} becomes same to the input voltage V_{IN}. While the V_{IN} power supply voltage drops below 1.0V and increases again to 1.0V or more, the output voltage V_{OUT2} may not be able to maintain low level.

■NOTE ON USE

- 1. Use this IC within the stated maximum ratings. Operation beyond these limits may cause degrading or permanent damage to the device.
- 2. The power supply input pin voltage drops by the resistance between power supply and the VIN pin, and by through current at operation of the IC. At this time, the IC may go into malfunction if the power supply input pin voltage falls below the minimum operating voltage range.
- 3. When the sense voltage is less than 1.0V, be sure to separate the VIN pin and the sense pin, and to apply the voltage over 1.0V to the VIN pin.
- 4. Note that a rapid and high fluctuation at the power supply input pin voltage may cause a wrong operation.
- In N channel open drain output, V_{OUT} voltages at detect and release are determined by resistance of a pull-up resistor connected at the V_{OUT} pin. Please choose proper resistance values with referring to Figure 3;

During detection: Vout=Vpull / (1+Rpull / Ron)

Vpull: Pull-up voltage

 $R_{ON}^{(^{+}1)}$: On-resistance of N channel driver M3 can be calculated as V_{DS} / I_{OUT1} from electrical characteristics,

For example, when $^{(2)}$ Ron = 0.5 / 0.8 × 10⁻³ = 625 Ω (MIN.) at V_{IN}=2.0V, Vpull = 3.0V and V_{OUT} \leq 0.1V at detect,

Rpull= (Vpull /Vout-1) × Ron= (3 / 0.1-1) × $625 \stackrel{.}{=} 18 k \Omega$

In this case, Rpull should be selected higher or equal to $18k\Omega$ in order to keep the output voltage less than 0.1V during detection.

- (*1) V_{IN} is smaller R_{ON} is bigger, be noted.

During releasing: Vout = Vpull / (1 + Rpull / Roff)

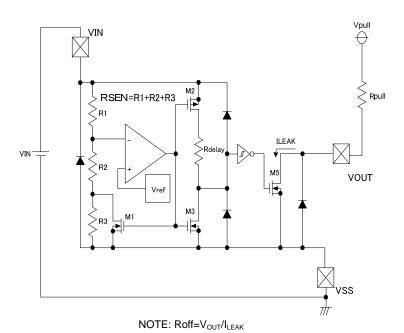
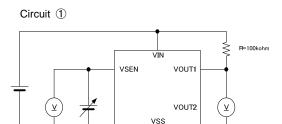
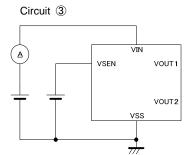
Vpull: Pull-up voltage

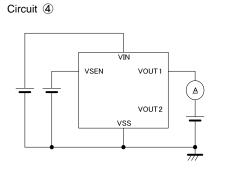
 R_{OFF} : On-resistance of N channel driver M3 is 15M Ω (MIN.) when the driver is off (as to V_{OUT} / I_{LEAK})

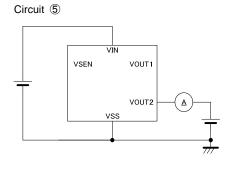
For example : when VpuII = 6.0V and $V_{OUT} \ge 5.99V$,

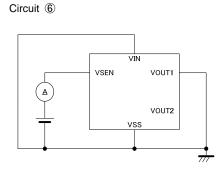
Rpull = (Vpull / V_{OUT}-1) × Roff = (6/5.99-1) × 15 × 10⁶ \rightleftharpoons 25 k Ω

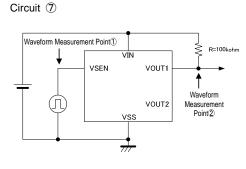
In this case, Rpull should be selected smaller or equal to 25 k Ω in order to obtain output voltage higher than 5.99V during releasing.

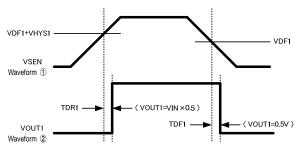




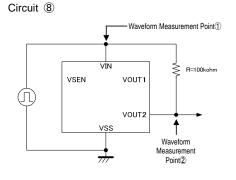

Figure 3: Test Circuit

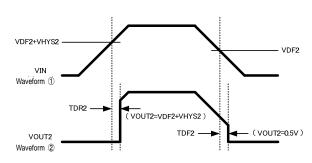

TEST CIRCUITS











■TYPICAL PERFORMANCE CHARACTERISTICS

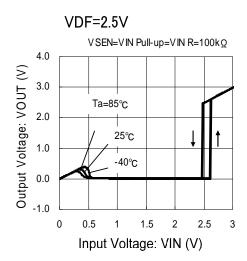
(1) Detect Voltage vs. Ambient Temperature

VDF=2.5V

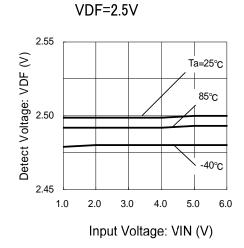
VIN=4.0V

2.55

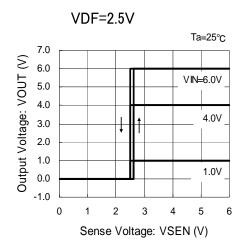
2.50

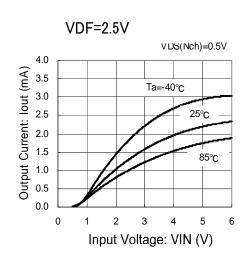

2.45

-50 -25 0 25 50 75 100

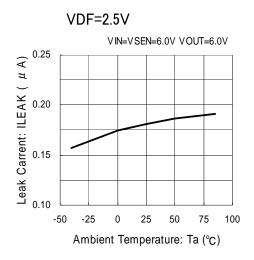

Ambient Temperature: Ta (°c)

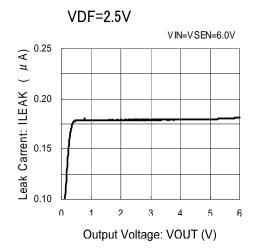
(3) Hysteresis Voltage vs. Ambient Temperature


(5)Output Voltage vs. Input Voltage


(2) Detect Voltage vs. Input Voltage

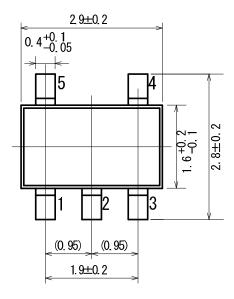
(4)Output Voltage vs. Sense Voltage

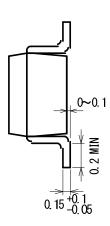

(6)Output Current vs. Input Voltage

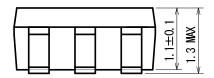


■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(7)Leak Current vs. Ambient Temperature

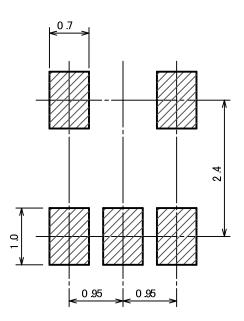

(8)Leak Current vs. Output Voltage





■PACKAGING INFORMATION

●SOT-25



*The side of pins are not gilded, but nickel is used: Sn $5\sim15\,\mu\,\mathrm{m}$

●SOT-25 Reference Pattern Layout

- 1. The products and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date.
- 2. We assume no responsibility for any infringement of patents, patent rights, or other rights arising from the use of any information and circuitry in this datasheet.
- 3. Please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this datasheet.
- 4. The products in this datasheet are not developed, designed, or approved for use with such equipment whose failure of malfunction can be reasonably expected to directly endanger the life of, or cause significant injury to, the user.
 - (e.g. Atomic energy; aerospace; transport; combustion and associated safety equipment thereof.)
- Please use the products listed in this datasheet within the specified ranges.
 Should you wish to use the products under conditions exceeding the specifications, please consult us or our representatives.
- 6. We assume no responsibility for damage or loss due to abnormal use.
- 7. All rights reserved. No part of this datasheet may be copied or reproduced without the prior permission of TOREX SEMICONDUCTOR LTD.

TOREX SEMICONDUCTOR LTD.